Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 108

1.
2.
4.

Small particles of fusinite and carbohydrate chars coated with aqueous soluble polymers: preparation and applications for in vivo EPR oximetry.

Gallez B, Debuyst R, Dejehet F, Liu KJ, Walczak T, Goda F, Demeure R, Taper H, Swartz HM.

Magn Reson Med. 1998 Jul;40(1):152-9.

PMID:
9660565
5.

Development of biocompatible implants of fusinite for in vivo EPR oximetry.

Gallez B, Debuyst R, Liu KJ, Demeure R, Dejehet F, Swartz HM.

MAGMA. 1996 Mar;4(1):71-5.

PMID:
8774004
7.

Development and evaluation of biocompatible films of polytetrafluoroethylene polymers holding lithium phthalocyanine crystals for their use in EPR oximetry.

Dinguizli M, Jeumont S, Beghein N, He J, Walczak T, Lesniewski PN, Hou H, Grinberg OY, Sucheta A, Swartz HM, Gallez B.

Biosens Bioelectron. 2006 Jan 15;21(7):1015-22. Epub 2005 Apr 15.

PMID:
16368480
8.

Development and evaluation of biocompatible inks for the local measurement of oxygen using in vivo EPR.

Charlier N, Beghein N, Gallez B.

NMR Biomed. 2004 Aug;17(5):303-10.

PMID:
15366029
9.

A molecular paramagnetic spin-doped biopolymeric oxygen sensor.

Meenakshisundaram G, Eteshola E, Blank A, Lee SC, Kuppusamy P.

Biosens Bioelectron. 2010 Jun 15;25(10):2283-9. doi: 10.1016/j.bios.2010.03.011. Epub 2010 Mar 15.

10.
11.

In vivo electron paramagnetic resonance oximetry with particulate materials.

Dunn JF, Swartz HM.

Methods. 2003 Jun;30(2):159-66.

PMID:
12725782
12.

An implantable Teflon chip holding lithium naphthalocyanine microcrystals for secure, safe, and repeated measurements of pO2 in tissues.

Pandian RP, Meenakshisundaram G, Bratasz A, Eteshola E, Lee SC, Kuppusamy P.

Biomed Microdevices. 2010 Jun;12(3):381-7. doi: 10.1007/s10544-009-9394-5.

13.

In vivo and in vitro EPR oximetry with fusinite: a new coal-derived, particulate EPR probe.

Vahidi N, Clarkson RB, Liu KJ, Norby SW, Wu M, Swartz HM.

Magn Reson Med. 1994 Feb;31(2):139-46.

PMID:
8133749
14.

Polymer coating of paramagnetic particulates for in vivo oxygen-sensing applications.

Eteshola E, Pandian RP, Lee SC, Kuppusamy P.

Biomed Microdevices. 2009 Apr;11(2):379-87. doi: 10.1007/s10544-008-9244-x.

15.

Carbon blacks as EPR sensors for localized measurements of tissue oxygenation.

Lan M, Beghein N, Charlier N, Gallez B.

Magn Reson Med. 2004 Jun;51(6):1272-8.

16.

Retrievable micro-inserts containing oxygen sensors for monitoring tissue oxygenation using EPR oximetry.

Dinguizli M, Beghein N, Gallez B.

Physiol Meas. 2008 Nov;29(11):1247-54. doi: 10.1088/0967-3334/29/11/001. Epub 2008 Oct 9.

PMID:
18843166
17.

In vivo oximetry using a nitroxide-liposome system.

Glockner JF, Chan HC, Swartz HM.

Magn Reson Med. 1991 Jul;20(1):123-33.

PMID:
1658535
18.

Electron paramagnetic resonance and dynamic nuclear polarization of char suspensions: surface science and oximetry.

Clarkson RB, Odintsov BM, Ceroke PJ, Ardenkjaer-Larsen JH, Fruianu M, Belford RL.

Phys Med Biol. 1998 Jul;43(7):1907-20.

PMID:
9703054
19.

A paramagnetic implant containing lithium naphthalocyanine microcrystals for high-resolution biological oximetry.

Meenakshisundaram G, Pandian RP, Eteshola E, Lee SC, Kuppusamy P.

J Magn Reson. 2010 Mar;203(1):185-9. doi: 10.1016/j.jmr.2009.11.016. Epub 2009 Nov 26.

20.

Real-time monitoring of ischemic and contralateral brain pO2 during stroke by variable length multisite resonators.

Hou H, Li H, Dong R, Khan N, Swartz H.

Magn Reson Imaging. 2014 Jun;32(5):563-9. doi: 10.1016/j.mri.2014.02.010. Epub 2014 Feb 10.

Supplemental Content

Support Center