Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Molecular Features of Energy Coupling in the F(0)F(1) ATP Synthase.

Nakamoto RK.

News Physiol Sci. 1999 Feb;14:40-46.

2.

Structures and interactions of proteins involved in the coupling function of the protonmotive F(o)F(1)-ATP synthase.

Gaballo A, Zanotti F, Papa S.

Curr Protein Pept Sci. 2002 Aug;3(4):451-60. Review.

PMID:
12370007
3.
5.

Osmomechanics of the Propionigenium modestum F(o) motor.

Dimroth P, Matthey U, Kaim G.

J Bioenerg Biomembr. 2000 Oct;32(5):449-58.

PMID:
15254380
7.
8.

Coupling proton movement to ATP synthesis in the chloroplast ATP synthase.

Richter ML, Samra HS, He F, Giessel AJ, Kuczera KK.

J Bioenerg Biomembr. 2005 Dec;37(6):467-73. Review.

PMID:
16691485
9.

Regulation of the F1F0-ATP synthase rotary nanomotor in its monomeric-bacterial and dimeric-mitochondrial forms.

García-Trejo JJ, Morales-Ríos E.

J Biol Phys. 2008 Apr;34(1-2):197-212. doi: 10.1007/s10867-008-9114-z. Epub 2008 Oct 4.

10.

Half channels mediating H(+) transport and the mechanism of gating in the Fo sector of Escherichia coli F1Fo ATP synthase.

Fillingame RH, Steed PR.

Biochim Biophys Acta. 2014 Jul;1837(7):1063-8. doi: 10.1016/j.bbabio.2014.03.005. Epub 2014 Mar 17. Review.

11.

Mechanism of the F(1)F(0)-type ATP synthase, a biological rotary motor.

Capaldi RA, Aggeler R.

Trends Biochem Sci. 2002 Mar;27(3):154-60. Review.

PMID:
11893513
12.

Bacterial Na(+)-ATP synthase has an undecameric rotor.

Stahlberg H, Müller DJ, Suda K, Fotiadis D, Engel A, Meier T, Matthey U, Dimroth P.

EMBO Rep. 2001 Mar;2(3):229-33.

13.

Molecular mechanisms of rotational catalysis in the F(0)F(1) ATP synthase.

Nakamoto RK, Ketchum CJ, Kuo PH, Peskova YB, Al-Shawi MK.

Biochim Biophys Acta. 2000 May 31;1458(2-3):289-99. Review.

15.

Thermophilic ATP synthase has a decamer c-ring: indication of noninteger 10:3 H+/ATP ratio and permissive elastic coupling.

Mitome N, Suzuki T, Hayashi S, Yoshida M.

Proc Natl Acad Sci U S A. 2004 Aug 17;101(33):12159-64. Epub 2004 Aug 9.

16.

How subunit coupling produces the gamma-subunit rotary motion in F1-ATPase.

Pu J, Karplus M.

Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1192-7. doi: 10.1073/pnas.0708746105. Epub 2008 Jan 23.

17.

Essentials for ATP synthesis by F1F0 ATP synthases.

von Ballmoos C, Wiedenmann A, Dimroth P.

Annu Rev Biochem. 2009;78:649-72. doi: 10.1146/annurev.biochem.78.081307.104803. Review.

PMID:
19489730
18.

Torque generation and utilization in motor enzyme F0F1-ATP synthase: half-torque F1 with short-sized pushrod helix and reduced ATP Synthesis by half-torque F0F1.

Usukura E, Suzuki T, Furuike S, Soga N, Saita E, Hisabori T, Kinosita K Jr, Yoshida M.

J Biol Chem. 2012 Jan 13;287(3):1884-91. doi: 10.1074/jbc.M111.305938. Epub 2011 Nov 28.

19.

Operation mechanism of F(o) F(1)-adenosine triphosphate synthase revealed by its structure and dynamics.

Iino R, Noji H.

IUBMB Life. 2013 Mar;65(3):238-46. doi: 10.1002/iub.1120. Epub 2013 Jan 22. Review.

20.

Mechanically driven ATP synthesis by F1-ATPase.

Itoh H, Takahashi A, Adachi K, Noji H, Yasuda R, Yoshida M, Kinosita K.

Nature. 2004 Jan 29;427(6973):465-8.

PMID:
14749837

Supplemental Content

Support Center