Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 123

1.

Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling.

Samatey FA, Imada K, Nagashima S, Vonderviszt F, Kumasaka T, Yamamoto M, Namba K.

Nature. 2001 Mar 15;410(6826):331-7.

PMID:
11268201
2.

Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy.

Yonekura K, Maki-Yonekura S, Namba K.

Nature. 2003 Aug 7;424(6949):643-50.

PMID:
12904785
3.

Structure and switching of bacterial flagellar filaments studied by X-ray fiber diffraction.

Yamashita I, Hasegawa K, Suzuki H, Vonderviszt F, Mimori-Kiyosue Y, Namba K.

Nat Struct Biol. 1998 Feb;5(2):125-32. Erratum in: Nat Struct Biol 1998 Jul;5(7):612.

PMID:
9461078
4.

Direct interaction of flagellin termini essential for polymorphic ability of flagellar filament.

Mimori-Kiyosue Y, Vonderviszt F, Yamashita I, Fujiyoshi Y, Namba K.

Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15108-13.

5.
7.

Key amino acid residues involved in the transitions of L- to R-type protofilaments of the Salmonella flagellar filament.

Hayashi F, Tomaru H, Furukawa E, Ikeda K, Fukano H, Oosawa K.

J Bacteriol. 2013 Aug;195(16):3503-13. doi: 10.1128/JB.02091-12. Epub 2013 May 31.

8.

Conformational change of flagellin for polymorphic supercoiling of the flagellar filament.

Maki-Yonekura S, Yonekura K, Namba K.

Nat Struct Mol Biol. 2010 Apr;17(4):417-22. doi: 10.1038/nsmb.1774. Epub 2010 Mar 14.

PMID:
20228803
9.

Structure of the bacterial flagellar hook and implication for the molecular universal joint mechanism.

Samatey FA, Matsunami H, Imada K, Nagashima S, Shaikh TR, Thomas DR, Chen JZ, Derosier DJ, Kitao A, Namba K.

Nature. 2004 Oct 28;431(7012):1062-8.

PMID:
15510139
10.

Radial mass analysis of the flagellar filament of Salmonella: implications for the subunit folding.

Yamashita I, Vonderviszt F, Mimori Y, Suzuki H, Oosawa K, Namba K.

J Mol Biol. 1995 Nov 3;253(4):547-58.

PMID:
7473733
11.

Amino acids responsible for flagellar shape are distributed in terminal regions of flagellin.

Kanto S, Okino H, Aizawa S, Yamaguchi S.

J Mol Biol. 1991 Jun 5;219(3):471-80.

PMID:
2051483
12.

A "mechanistic" explanation of the multiple helical forms adopted by bacterial flagellar filaments.

Calladine CR, Luisi BF, Pratap JV.

J Mol Biol. 2013 Mar 11;425(5):914-28. doi: 10.1016/j.jmb.2012.12.007. Epub 2012 Dec 26.

14.

Mechanical unfolding of bacterial flagellar filament protein by molecular dynamics simulation.

Chng CP, Kitao A.

J Mol Graph Model. 2010 Feb 26;28(6):548-54. doi: 10.1016/j.jmgm.2009.11.007. Epub 2009 Dec 4.

PMID:
20044289
15.

The flagellar filament of Rhodobacter sphaeroides: pH-induced polymorphic transitions and analysis of the fliC gene.

Shah DS, Perehinec T, Stevens SM, Aizawa SI, Sockett RE.

J Bacteriol. 2000 Sep;182(18):5218-24.

16.

Divergence of quaternary structures among bacterial flagellar filaments.

Galkin VE, Yu X, Bielnicki J, Heuser J, Ewing CP, Guerry P, Egelman EH.

Science. 2008 Apr 18;320(5874):382-5. doi: 10.1126/science.1155307.

17.

Folding energetics of a multidomain protein, flagellin.

Honda S, Uedaira H, Vonderviszt F, Kidokoro S, Namba K.

J Mol Biol. 1999 Oct 29;293(3):719-32.

PMID:
10543962
18.

Non-helical perturbations of the flagellar filament: Salmonella typhimurium SJW117 at 9.6 A resolution.

Trachtenberg S, DeRosier DJ, Zemlin F, Beckmann E.

J Mol Biol. 1998 Mar 6;276(4):759-73.

PMID:
9500917
19.

Role of the outermost subdomain of Salmonella flagellin in the filament structure revealed by electron cryomicroscopy.

Mimori-Kiyosue Y, Yamashita I, Fujiyoshi Y, Yamaguchi S, Namba K.

J Mol Biol. 1998 Nov 27;284(2):521-30.

PMID:
9813134
20.

Supplemental Content

Support Center