Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Substrate complexes and domain organization of the Salmonella flagellar export chaperones FlgN and FliT.

Bennett JC, Thomas J, Fraser GM, Hughes C.

Mol Microbiol. 2001 Feb;39(3):781-91.

2.
3.

Interactions of bacterial flagellar chaperone-substrate complexes with FlhA contribute to co-ordinating assembly of the flagellar filament.

Kinoshita M, Hara N, Imada K, Namba K, Minamino T.

Mol Microbiol. 2013 Dec;90(6):1249-61. doi: 10.1111/mmi.12430. Epub 2013 Oct 30.

5.

Interaction between FliI ATPase and a flagellar chaperone FliT during bacterial flagellar protein export.

Minamino T, Kinoshita M, Imada K, Namba K.

Mol Microbiol. 2012 Jan;83(1):168-78. doi: 10.1111/j.1365-2958.2011.07924.x. Epub 2011 Dec 7.

6.

Recognition and targeting mechanisms by chaperones in flagellum assembly and operation.

Khanra N, Rossi P, Economou A, Kalodimos CG.

Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):9798-803. doi: 10.1073/pnas.1607845113. Epub 2016 Aug 15.

7.

Rearrangements of α-helical structures of FlgN chaperone control the binding affinity for its cognate substrates during flagellar type III export.

Kinoshita M, Nakanishi Y, Furukawa Y, Namba K, Imada K, Minamino T.

Mol Microbiol. 2016 Aug;101(4):656-70. doi: 10.1111/mmi.13415. Epub 2016 Jun 3.

8.

The interaction dynamics of a negative feedback loop regulates flagellar number in Salmonella enterica serovar Typhimurium.

Aldridge C, Poonchareon K, Saini S, Ewen T, Soloyva A, Rao CV, Imada K, Minamino T, Aldridge PD.

Mol Microbiol. 2010 Dec;78(6):1416-30. doi: 10.1111/j.1365-2958.2010.07415.x. Epub 2010 Oct 15.

9.

Flagellin polymerisation control by a cytosolic export chaperone.

Auvray F, Thomas J, Fraser GM, Hughes C.

J Mol Biol. 2001 Apr 27;308(2):221-9.

10.

Interaction of a bacterial flagellar chaperone FlgN with FlhA is required for efficient export of its cognate substrates.

Minamino T, Kinoshita M, Hara N, Takeuchi S, Hida A, Koya S, Glenwright H, Imada K, Aldridge PD, Namba K.

Mol Microbiol. 2012 Feb;83(4):775-88. doi: 10.1111/j.1365-2958.2011.07964.x. Epub 2012 Jan 11.

11.

FlgN is required for flagellum-based motility by Bacillus subtilis.

Cairns LS, Marlow VL, Kiley TB, Birchall C, Ostrowski A, Aldridge PD, Stanley-Wall NR.

J Bacteriol. 2014 Jun;196(12):2216-26. doi: 10.1128/JB.01599-14. Epub 2014 Apr 4.

12.

Structural insight into the regulatory mechanisms of interactions of the flagellar type III chaperone FliT with its binding partners.

Imada K, Minamino T, Kinoshita M, Furukawa Y, Namba K.

Proc Natl Acad Sci U S A. 2010 May 11;107(19):8812-7. doi: 10.1073/pnas.1001866107. Epub 2010 Apr 26.

13.

Identification of the flagellar chaperone FlgN in the phytopathogen Xanthomonas axonopodis pathovar citri by its interaction with hook-associated FlgK.

Khater L, Alegria MC, Borin PF, Santos TM, Docena C, Tasic L, Farah CS, Ramos CH.

Arch Microbiol. 2007 Sep;188(3):243-50. Epub 2007 May 10.

PMID:
17492271
14.

Functional analysis of the flagellar genes in the fliD operon of Salmonella typhimurium.

Yokoseki T, Kutsukake K, Ohnishi K, Iino T.

Microbiology. 1995 Jul;141 ( Pt 7):1715-22.

PMID:
7551038
15.
16.

Docking of cytosolic chaperone-substrate complexes at the membrane ATPase during flagellar type III protein export.

Thomas J, Stafford GP, Hughes C.

Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3945-50. Epub 2004 Mar 4.

17.
18.

FliT selectively enhances proteolysis of FlhC subunit in FlhD4C2 complex by an ATP-dependent protease, ClpXP.

Sato Y, Takaya A, Mouslim C, Hughes KT, Yamamoto T.

J Biol Chem. 2014 Nov 21;289(47):33001-11. doi: 10.1074/jbc.M114.593749. Epub 2014 Oct 2.

19.
20.

Supplemental Content

Support Center