Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 93

1.

New modal wave-front sensor: a theoretical analysis

Neil MA, Booth MJ, Wilson T.

J Opt Soc Am A Opt Image Sci Vis. 2000 Jun;17(6):1098-107.

PMID:
10850481
2.

New modal wave-front sensor: application to adaptive confocal fluorescence microscopy and two-photon excitation fluorescence microscopy.

Booth MJ, Neil MA, Wilson T.

J Opt Soc Am A Opt Image Sci Vis. 2002 Oct;19(10):2112-20.

PMID:
12365630
3.

Closed-loop aberration correction by use of a modal Zernike wave-front sensor.

Neil MA, Booth MJ, Wilson T.

Opt Lett. 2000 Aug 1;25(15):1083-5.

PMID:
18064278
4.
5.

Spatially filtered wave-front sensor for high-order adaptive optics.

Poyneer LA, Macintosh B.

J Opt Soc Am A Opt Image Sci Vis. 2004 May;21(5):810-9.

PMID:
15139434
6.

Statistical variation of aberration structure and image quality in a normal population of healthy eyes.

Thibos LN, Hong X, Bradley A, Cheng X.

J Opt Soc Am A Opt Image Sci Vis. 2002 Dec;19(12):2329-48.

PMID:
12469728
7.

A fast modal wave-front sensor.

Ribak E, Ebstein S.

Opt Express. 2001 Jul 30;9(3):152-7.

PMID:
19421284
8.

Variational solution for modal wave-front projection functions of minimum-error norm.

Solomon CJ, Loos GC, Rios S.

J Opt Soc Am A Opt Image Sci Vis. 2001 Jul;18(7):1519-22.

PMID:
11444543
9.

Hybrid curvature and gradient wave-front sensor.

Paterson C, Dainty JC.

Opt Lett. 2000 Dec 1;25(23):1687-9.

PMID:
18066314
10.

Prediction of wave-front sensor slope measurements with artificial neural networks.

Montera DA, Welsh BM, Roggemann MC, Ruck DW.

Appl Opt. 1997 Jan 20;36(3):675-81.

PMID:
18250726
11.

Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration

Vorontsov MA, Carhart GW, Cohen M, Cauwenberghs G.

J Opt Soc Am A Opt Image Sci Vis. 2000 Aug;17(8):1440-53.

PMID:
10935872
12.

Eye models for the prediction of contrast vision in patients with new intraocular lens designs.

Piers PA, Norrby NE, Mester U.

Opt Lett. 2004 Apr 1;29(7):733-5.

PMID:
15072374
13.

Wave-front aberration measurements on GRIN-rod lenses.

Cline TW, Jander RB.

Appl Opt. 1982 Mar 15;21(6):1035-41. doi: 10.1364/AO.21.001035.

PMID:
20389800
14.

Improvement of Shack-Hartmann wave-front sensor measurement for extreme adaptive optics.

Nicolle M, Fusco T, Rousset G, Michau V.

Opt Lett. 2004 Dec 1;29(23):2743-5.

PMID:
15605491
15.

Analysis of Seidel aberration by use of the discrete wavelet transform.

Chang RS, Sheu JY, Lin CH.

Appl Opt. 2002 May 1;41(13):2408-13.

PMID:
12009149
16.
17.

Highly sensitive wave-front sensor with a non-zero-order phase plate.

Luo H, Zhou C, Zou H.

Appl Opt. 2005 Aug 1;44(22):4654-8.

PMID:
16075877
18.

Open- and closed-loop aberration correction by use of a quadrature interferometric wave-front sensor.

Baker KL, Stappaerts EA, Wilks SC, Young PE, Gavel DT, Tucker JW, Silva DA, Olivier SS.

Opt Lett. 2004 Jan 1;29(1):47-9.

PMID:
14719656
19.

Closed-loop experimental validation of the spatially filtered Shack-Hartmann concept.

Fusco T, Petit C, Rousset G, Conan JM, Beuzit JL.

Opt Lett. 2005 Jun 1;30(11):1255-7.

PMID:
15981498
20.

Optimization of absorption-based optical chemical sensors that employ a single-reflection configuration.

Polerecky L, Burke CS, MacCraith BD.

Appl Opt. 2002 May 20;41(15):2879-87.

PMID:
12027175

Supplemental Content

Support Center