Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 272

1.

The distribution of rest periods affects performance and adaptations of energy metabolism induced by high-intensity training in human muscle.

Parra J, Cadefau JA, Rodas G, Amigó N, Cussó R.

Acta Physiol Scand. 2000 Jun;169(2):157-65.

PMID:
10848646
2.

Enzyme adaptations of human skeletal muscle during bicycle short-sprint training and detraining.

Linossier MT, Dormois D, Perier C, Frey J, Geyssant A, Denis C.

Acta Physiol Scand. 1997 Dec;161(4):439-45.

PMID:
9429650
3.

Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance.

Burgomaster KA, Heigenhauser GJ, Gibala MJ.

J Appl Physiol (1985). 2006 Jun;100(6):2041-7. Epub 2006 Feb 9.

4.

Altering the rest interval during high-intensity interval training does not affect muscle or performance adaptations.

Edge J, Eynon N, McKenna MJ, Goodman CA, Harris RC, Bishop DJ.

Exp Physiol. 2013 Feb;98(2):481-90. doi: 10.1113/expphysiol.2012.067603. Epub 2012 Aug 23.

5.

A short training programme for the rapid improvement of both aerobic and anaerobic metabolism.

Rodas G, Ventura JL, Cadefau JA, Cussó R, Parra J.

Eur J Appl Physiol. 2000 Aug;82(5-6):480-6.

PMID:
10985604
6.

Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans.

Burgomaster KA, Hughes SC, Heigenhauser GJ, Bradwell SN, Gibala MJ.

J Appl Physiol (1985). 2005 Jun;98(6):1985-90. Epub 2005 Feb 10.

7.

Single-leg cycle training is superior to double-leg cycling in improving the oxidative potential and metabolic profile of trained skeletal muscle.

Abbiss CR, Karagounis LG, Laursen PB, Peiffer JJ, Martin DT, Hawley JA, Fatehee NN, Martin JC.

J Appl Physiol (1985). 2011 May;110(5):1248-55. doi: 10.1152/japplphysiol.01247.2010. Epub 2011 Feb 17.

8.
9.

Power output and muscle metabolism during and following recovery from 10 and 20 s of maximal sprint exercise in humans.

Bogdanis GC, Nevill ME, Lakomy HK, Boobis LH.

Acta Physiol Scand. 1998 Jul;163(3):261-72.

PMID:
9715738
10.

Skeletal muscle metabolic and ionic adaptations during intense exercise following sprint training in humans.

Harmer AR, McKenna MJ, Sutton JR, Snow RJ, Ruell PA, Booth J, Thompson MW, Mackay NA, Stathis CG, Crameri RM, Carey MF, Eager DM.

J Appl Physiol (1985). 2000 Nov;89(5):1793-803.

11.

Biochemical and histochemical adaptation to sprint training in young athletes.

Cadefau J, Casademont J, Grau JM, Fernández J, Balaguer A, Vernet M, Cussó R, Urbano-Márquez A.

Acta Physiol Scand. 1990 Nov;140(3):341-51.

PMID:
2082703
12.

Exercise training increases branched-chain oxoacid dehydrogenase kinase content in human skeletal muscle.

Howarth KR, Burgomaster KA, Phillips SM, Gibala MJ.

Am J Physiol Regul Integr Comp Physiol. 2007 Sep;293(3):R1335-41. Epub 2007 Jun 20.

13.

Aerobic and anaerobic changes with high-intensity interval training in active college-aged men.

Ziemann E, Grzywacz T, Łuszczyk M, Laskowski R, Olek RA, Gibson AL.

J Strength Cond Res. 2011 Apr;25(4):1104-12. doi: 10.1519/JSC.0b013e3181d09ec9.

PMID:
20661160
14.

Sprint training increases muscle oxidative metabolism during high-intensity exercise in patients with type 1 diabetes.

Harmer AR, Chisholm DJ, McKenna MJ, Hunter SK, Ruell PA, Naylor JM, Maxwell LJ, Flack JR.

Diabetes Care. 2008 Nov;31(11):2097-102. doi: 10.2337/dc08-0329. Epub 2008 Aug 20. Erratum in: Diabetes Care. 2009 Mar;32(3):523.

15.

Time-dependent effects of short-term training on muscle metabolism during the early phase of exercise.

Green HJ, Bombardier E, Burnett ME, Smith IC, Tupling SM, Ranney DA.

Am J Physiol Regul Integr Comp Physiol. 2009 Nov;297(5):R1383-91. doi: 10.1152/ajpregu.00203.2009. Epub 2009 Aug 26.

16.

High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle.

Perry CG, Heigenhauser GJ, Bonen A, Spriet LL.

Appl Physiol Nutr Metab. 2008 Dec;33(6):1112-23. doi: 10.1139/H08-097.

PMID:
19088769
17.

Six weeks of a polarized training-intensity distribution leads to greater physiological and performance adaptations than a threshold model in trained cyclists.

Neal CM, Hunter AM, Brennan L, O'Sullivan A, Hamilton DL, De Vito G, Galloway SD.

J Appl Physiol (1985). 2013 Feb 15;114(4):461-71. doi: 10.1152/japplphysiol.00652.2012. Epub 2012 Dec 20. Erratum in: J Appl Physiol. 2013 May 15;114(10):1490.

18.

Muscle performance and enzymatic adaptations to sprint interval training.

MacDougall JD, Hicks AL, MacDonald JR, McKelvie RS, Green HJ, Smith KM.

J Appl Physiol (1985). 1998 Jun;84(6):2138-42.

19.

Elevated muscle glycogen and anaerobic energy production during exhaustive exercise in man.

Bangsbo J, Graham TE, Kiens B, Saltin B.

J Physiol. 1992;451:205-27.

20.

Training for intense exercise performance: high-intensity or high-volume training?

Laursen PB.

Scand J Med Sci Sports. 2010 Oct;20 Suppl 2:1-10. doi: 10.1111/j.1600-0838.2010.01184.x. Review.

PMID:
20840557

Supplemental Content

Support Center