Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 175

1.

Probing the mechanistic role of glutamate residue in the zinc-binding motif of type A botulinum neurotoxin light chain.

Li L, Binz T, Niemann H, Singh BR.

Biochemistry. 2000 Mar 7;39(9):2399-405.

PMID:
10694409
2.

Arg(362) and Tyr(365) of the botulinum neurotoxin type a light chain are involved in transition state stabilization.

Binz T, Bade S, Rummel A, Kollewe A, Alves J.

Biochemistry. 2002 Feb 12;41(6):1717-23.

PMID:
11827515
3.

Role of zinc binding in type A botulinum neurotoxin light chain's toxic structure.

Li L, Singh BR.

Biochemistry. 2000 Aug 29;39(34):10581-6.

PMID:
10956050
4.

Role of two active site Glu residues in the molecular action of botulinum neurotoxin endopeptidase.

Kukreja RV, Sharma S, Cai S, Singh BR.

Biochim Biophys Acta. 2007 Feb;1774(2):213-22. Epub 2006 Nov 17.

PMID:
17189717
5.

Study of asparagine 353 in aminopeptidase A: characterization of a novel motif (GXMEN) implicated in exopeptidase specificity of monozinc aminopeptidases.

Iturrioz X, Rozenfeld R, Michaud A, Corvol P, Llorens-Cortes C.

Biochemistry. 2001 Dec 4;40(48):14440-8.

PMID:
11724556
6.

Identification of glutamate residues essential for catalytic activity and zinc coordination in aminopeptidase A.

Vazeux G, Wang J, Corvol P, Llorens-Cortès C.

J Biol Chem. 1996 Apr 12;271(15):9069-74.

7.
9.

Role of the S1' subsite glutamine 215 in activity and specificity of stromelysin-3 by site-directed mutagenesis.

Holtz B, Cuniasse P, Boulay A, Kannan R, Mucha A, Beau F, Basset P, Dive V.

Biochemistry. 1999 Sep 14;38(37):12174-9.

PMID:
10508422
12.

Folate activation and catalysis in methylenetetrahydrofolate reductase from Escherichia coli: roles for aspartate 120 and glutamate 28.

Trimmer EE, Ballou DP, Ludwig ML, Matthews RG.

Biochemistry. 2001 May 29;40(21):6216-26.

PMID:
11371182
13.

Quinolinol and peptide inhibitors of zinc protease in botulinum neurotoxin A: effects of zinc ion and peptides on inhibition.

Lai H, Feng M, Roxas-Duncan V, Dakshanamurthy S, Smith LA, Yang DC.

Arch Biochem Biophys. 2009 Nov;491(1-2):75-84. doi: 10.1016/j.abb.2009.09.008. Epub 2009 Sep 20.

PMID:
19772855
14.

The choline binding site of phospholipase C (Bacillus cereus): insights into substrate specificity.

Martin SF, Follows BC, Hergenrother PJ, Trotter BK.

Biochemistry. 2000 Mar 28;39(12):3410-5.

PMID:
10727235
15.

Site-directed mutagenesis of active site glutamate-217 in mouse adenosine deaminase.

Mohamedali KA, Kurz LC, Rudolph FB.

Biochemistry. 1996 Feb 6;35(5):1672-80.

PMID:
8634299
16.

Identification of critical residues of choline kinase A2 from Caenorhabditis elegans.

Yuan C, Kent C.

J Biol Chem. 2004 Apr 23;279(17):17801-9. Epub 2004 Feb 11.

17.

Identification of glutamic acid 479 as the gluzincin coordinator of zinc in FtsH (HflB).

Saikawa N, Ito K, Akiyama Y.

Biochemistry. 2002 Feb 12;41(6):1861-8.

PMID:
11827531
18.

The roles of Glu93 and Tyr149 in astacin-like zinc peptidases.

Yiallouros I, Grosse Berkhoff E, Stöcker W.

FEBS Lett. 2000 Nov 10;484(3):224-8.

19.
20.

Probing the functional role of two conserved active site aspartates in mouse adenosine deaminase.

Sideraki V, Mohamedali KA, Wilson DK, Chang Z, Kellems RE, Quiocho FA, Rudolph FB.

Biochemistry. 1996 Jun 18;35(24):7862-72.

PMID:
8672487

Supplemental Content

Support Center