Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 228

1.

Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB.

Mogk A, Tomoyasu T, Goloubinoff P, Rüdiger S, Röder D, Langen H, Bukau B.

EMBO J. 1999 Dec 15;18(24):6934-49.

2.

Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol.

Tomoyasu T, Mogk A, Langen H, Goloubinoff P, Bukau B.

Mol Microbiol. 2001 Apr;40(2):397-413.

3.

Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli.

Rinas U, Hoffmann F, Betiku E, Estapé D, Marten S.

J Biotechnol. 2007 Jan 1;127(2):244-57. Epub 2006 Jul 16.

PMID:
16945443
4.
5.
6.

Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses.

Diamant S, Eliahu N, Rosenthal D, Goloubinoff P.

J Biol Chem. 2001 Oct 26;276(43):39586-91. Epub 2001 Aug 21.

7.
10.

Novel insights into the mechanism of chaperone-assisted protein disaggregation.

Weibezahn J, Schlieker C, Tessarz P, Mogk A, Bukau B.

Biol Chem. 2005 Aug;386(8):739-44. Review.

PMID:
16201868
11.

Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network.

Goloubinoff P, Mogk A, Zvi AP, Tomoyasu T, Bukau B.

Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13732-7.

12.

Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK.

Mogk A, Schlieker C, Friedrich KL, Schönfeld HJ, Vierling E, Bukau B.

J Biol Chem. 2003 Aug 15;278(33):31033-42. Epub 2003 Jun 4.

14.

The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis.

Mogk A, Homuth G, Scholz C, Kim L, Schmid FX, Schumann W.

EMBO J. 1997 Aug 1;16(15):4579-90.

15.

Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation.

Mogk A, Deuerling E, Vorderwülbecke S, Vierling E, Bukau B.

Mol Microbiol. 2003 Oct;50(2):585-95.

16.

Regulation of ATPase and chaperone cycle of DnaK from Thermus thermophilus by the nucleotide exchange factor GrpE.

Groemping Y, Klostermeier D, Herrmann C, Veit T, Seidel R, Reinstein J.

J Mol Biol. 2001 Feb 2;305(5):1173-83.

PMID:
11162122
17.

Global analysis of chaperone effects using a reconstituted cell-free translation system.

Niwa T, Kanamori T, Ueda T, Taguchi H.

Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):8937-42. doi: 10.1073/pnas.1201380109. Epub 2012 May 21.

18.

Size-dependent disaggregation of stable protein aggregates by the DnaK chaperone machinery.

Diamant S, Ben-Zvi AP, Bukau B, Goloubinoff P.

J Biol Chem. 2000 Jul 14;275(28):21107-13.

20.

DnaK-mediated association of ClpB to protein aggregates. A bichaperone network at the aggregate surface.

Acebrón SP, Martín I, del Castillo U, Moro F, Muga A.

FEBS Lett. 2009 Sep 17;583(18):2991-6. doi: 10.1016/j.febslet.2009.08.020. Epub 2009 Aug 19. Erratum in: FEBS Lett. 2009 Oct 6;583(19):3301.

Supplemental Content

Support Center