Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 128

1.

Release of highly active Fet3 from membranes of the yeast Pichia pastoris by limited proteolysis.

Bonaccorsi di Patti MC, Bellenchi GC, Bielli P, Calabrese L.

Arch Biochem Biophys. 1999 Dec 15;372(2):295-9.

PMID:
10600167
2.

Cloning of Pichia pastoris Fet3: insights into the high affinity iron uptake system.

Paronetto MP, Miele R, Maugliani A, Borro M, Bonaccorsi di Patti MC.

Arch Biochem Biophys. 2001 Aug 1;392(1):162-7.

PMID:
11469807
3.

Specific aspartate residues in FET3 control high-affinity iron transport in Saccharomyces cerevisiae.

Bonaccorsi di Patti MC, Felice MR, De Domenico I, Lania A, Alaleona F, Musci G.

Yeast. 2005 Jul 15;22(9):677-87.

4.

Homology modeling of the multicopper oxidase Fet3 gives new insights in the mechanism of iron transport in yeast.

di Patti MC, Pascarella S, Catalucci D, Calabrese L.

Protein Eng. 1999 Nov;12(11):895-7.

PMID:
10585494
5.
6.
7.

Spectroscopic analysis of the trinuclear cluster in the Fet3 protein from yeast, a multinuclear copper oxidase.

Blackburn NJ, Ralle M, Hassett R, Kosman DJ.

Biochemistry. 2000 Mar 7;39(9):2316-24.

PMID:
10694398
8.

Purification and characterization of Fet3 protein, a yeast homologue of ceruloplasmin.

de Silva D, Davis-Kaplan S, Fergestad J, Kaplan J.

J Biol Chem. 1997 May 30;272(22):14208-13.

9.

A GATA-type transcription factor regulates expression of the high-affinity iron uptake system in the methylotrophic yeast Pichia pastoris.

Miele R, Barra D, Bonaccorsi di Patti MC.

Arch Biochem Biophys. 2007 Sep 1;465(1):172-9. Epub 2007 Jun 11.

PMID:
17592720
10.

The FET3 gene product required for high affinity iron transport in yeast is a cell surface ferroxidase.

De Silva DM, Askwith CC, Eide D, Kaplan J.

J Biol Chem. 1995 Jan 20;270(3):1098-101.

11.

Targeted suppression of the ferroxidase and iron trafficking activities of the multicopper oxidase Fet3p from Saccharomyces cerevisiae.

Wang TP, Quintanar L, Severance S, Solomon EI, Kosman DJ.

J Biol Inorg Chem. 2003 Jul;8(6):611-20. Epub 2003 Apr 9.

PMID:
12684851
12.

A permease-oxidase complex involved in high-affinity iron uptake in yeast.

Stearman R, Yuan DS, Yamaguchi-Iwai Y, Klausner RD, Dancis A.

Science. 1996 Mar 15;271(5255):1552-7.

PMID:
8599111
13.

Ferrous binding to the multicopper oxidases Saccharomyces cerevisiae Fet3p and human ceruloplasmin: contributions to ferroxidase activity.

Quintanar L, Gebhard M, Wang TP, Kosman DJ, Solomon EI.

J Am Chem Soc. 2004 Jun 2;126(21):6579-89.

PMID:
15161286
14.
15.

Chicken ceruloplasmin. Evidence in support of a trinuclear cluster involving type 2 and 3 copper centers.

Calabrese L, Carbonaro M, Musci G.

J Biol Chem. 1988 May 15;263(14):6480-3.

16.

The essential role of Glu-185 and Tyr-354 residues in the ferroxidase activity of Saccharomyces cerevisiae Fet3.

Bonaccorsi di Patti MC, Felice MR, Camuti AP, Lania A, Musci G.

FEBS Lett. 2000 Apr 28;472(2-3):283-6.

17.

The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake.

Askwith C, Eide D, Van Ho A, Bernard PS, Li L, Davis-Kaplan S, Sipe DM, Kaplan J.

Cell. 1994 Jan 28;76(2):403-10.

PMID:
8293473
18.

Isolation of Pichia pastoris genes involved in ER-to-Golgi transport.

Payne WE, Kaiser CA, Bevis BJ, Soderholm J, Fu D, Sears IB, Glick BS.

Yeast. 2000 Aug;16(11):979-93.

19.

Desferrioxamine-mediated iron uptake in Saccharomyces cerevisiae. Evidence for two pathways of iron uptake.

Yun CW, Ferea T, Rashford J, Ardon O, Brown PO, Botstein D, Kaplan J, Philpott CC.

J Biol Chem. 2000 Apr 7;275(14):10709-15.

20.

Spectroscopy and reactivity of the type 1 copper site in Fet3p from Saccharomyces cerevisiae: correlation of structure with reactivity in the multicopper oxidases.

Machonkin TE, Quintanar L, Palmer AE, Hassett R, Severance S, Kosman DJ, Solomon EI.

J Am Chem Soc. 2001 Jun 13;123(23):5507-17.

PMID:
11389633

Supplemental Content

Support Center