Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 92

1.

Reactivity of Lys(NH2)-containing peptides toward endopeptidases.

Samson F, Bonnet D, Rommens C, Gras-Masse H, Melnyk O.

J Pept Sci. 1999 Aug;5(8):352-9.

PMID:
10507684
2.

Tryptic hydrolysis of hGH-RH(1-29)-NH2 analogues containing Lys or Orn in positions 12 and 21.

Witkowska E, Orłowska A, Sagan B, Smoluch M, Izdebski J.

J Pept Sci. 2001 Mar;7(3):166-72.

PMID:
11297353
3.
4.

Mass spectrometric identification of the trypsin cleavage pathway in lysyl-proline containing oligotuftsin peptides.

Manea M, Mezo G, Hudecz F, Przybylski M.

J Pept Sci. 2007 Apr;13(4):227-36.

PMID:
17394121
5.

Hydrolysis of S-2-aminoethylcysteinyl peptide bond by Achromobacter protease I.

Masaki T, Takiya T, Tsunasawa S, Kuwahara S, Sakiyama F, Soejima M.

Biosci Biotechnol Biochem. 1994 Jan;58(1):215-6.

6.

Strong cation exchange-based fractionation of Lys-N-generated peptides facilitates the targeted analysis of post-translational modifications.

Taouatas N, Altelaar AF, Drugan MM, Helbig AO, Mohammed S, Heck AJ.

Mol Cell Proteomics. 2009 Jan;8(1):190-200. doi: 10.1074/mcp.M800285-MCP200. Epub 2008 Sep 29.

7.

Oxidation of epsilon-amino group of lysyl peptides by bovine serum amine oxidase.

Oda O, Manabe T, Okuyama T.

J Biochem. 1981 Apr;89(4):1317-23.

8.

Proteolysis of peptide dendrimers.

Sommer P, Fluxa VS, Darbre T, Reymond JL.

Chembiochem. 2009 Jun 15;10(9):1527-36. doi: 10.1002/cbic.200900060.

PMID:
19434653
9.

Protease-activated receptor-2 (PAR-2): structure-function study of receptor activation by diverse peptides related to tethered-ligand epitopes.

Maryanoff BE, Santulli RJ, McComsey DF, Hoekstra WJ, Hoey K, Smith CE, Addo M, Darrow AL, Andrade-Gordon P.

Arch Biochem Biophys. 2001 Feb 15;386(2):195-204.

PMID:
11368342
10.
11.

Cyclic peptides. VIII. Synthesis and tryptic hydrolysis of cyclic depsidipeptides containing a lysine residue.

Yasutake A, Miyazaki K, Aoyagi H, Kato T, Izumiya N.

Int J Pept Protein Res. 1980 Jul;16(1):61-5.

PMID:
6777325
12.
13.

Differences in substrate and inhibitor sequence specificity of human, mouse and rat tissue kallikreins.

Fogaça SE, Melo RL, Pimenta DC, Hosoi K, Juliano L, Juliano MA.

Biochem J. 2004 Jun 15;380(Pt 3):775-81.

14.

S(1)' and S(2)' subsite specificities of human plasma kallikrein and tissue kallikrein 1 for the hydrolysis of peptides derived from the bradykinin domain of human kininogen.

Lima AR, Alves FM, Angelo PF, Andrade D, Blaber SI, Blaber M, Juliano L, Juliano MA.

Biol Chem. 2008 Dec;389(12):1487-94. doi: 10.1515/BC.2008.166.

PMID:
18844446
15.

Human ras-converting enzyme (hRCE1) endoproteolytic activity on K-ras-derived peptides.

Hollander I, Frommer E, Mallon R.

Anal Biochem. 2000 Nov 1;286(1):129-37.

PMID:
11038283
16.

Screening a combinatorial peptide library to develop a human glandular kallikrein 2-activated prodrug as targeted therapy for prostate cancer.

Janssen S, Jakobsen CM, Rosen DM, Ricklis RM, Reineke U, Christensen SB, Lilja H, Denmeade SR.

Mol Cancer Ther. 2004 Nov;3(11):1439-50.

17.

The world of beta- and gamma-peptides comprised of homologated proteinogenic amino acids and other components.

Seebach D, Beck AK, Bierbaum DJ.

Chem Biodivers. 2004 Aug;1(8):1111-239. Review.

PMID:
17191902
18.
19.

[Endo-epsilon-(gamma-Glu)Lys-isopeptidolysis as a sign of highly-specific proteolysis].

Baskova IP, Zavalova LL, Kuzina EV.

Bioorg Khim. 1994 May;20(5):492-7. Review. Russian.

PMID:
7914407
20.

[Hydrolysis by enteropeptidase of nonspecific (model) peptide sequences and possible physiological role of this phenomenon].

Likhareva VV, Mikhaĭlova AG, Rumsh LD.

Vopr Med Khim. 2002 Nov-Dec;48(6):561-9. Russian.

PMID:
12698555

Supplemental Content

Support Center