Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 160

1.

Optical recording of light-evoked calcium signals in the functionally intact retina.

Denk W, Detwiler PB.

Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):7035-40.

2.

Response to light of various retinal cell types during spreading depression.

Tomita T, Shimoda Y.

Vision Res. 1983;23(11):1309-13.

PMID:
6606893
3.

Rods and cones project to the inner plexiform layer during development.

Johnson PT, Williams RR, Cusato K, Reese BE.

J Comp Neurol. 1999 Nov 8;414(1):1-12. Erratum in: J Comp Neurol 2000 Jan 17;416(3):416.

PMID:
10494074
4.
5.

Evaluating neural activity of retinal ganglion cells by flash-evoked intrinsic signal imaging in macaque retina.

Hanazono G, Tsunoda K, Kazato Y, Tsubota K, Tanifuji M.

Invest Ophthalmol Vis Sci. 2008 Oct;49(10):4655-63. doi: 10.1167/iovs.08-1936. Epub 2008 Jun 6.

PMID:
18539934
6.

Cone and rod inputs to murine retinal ganglion cells: evidence of cone opsin specific channels.

Ekesten B, Gouras P.

Vis Neurosci. 2005 Nov-Dec;22(6):893-903.

PMID:
16469196
7.

Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses.

Belenky MA, Smeraski CA, Provencio I, Sollars PJ, Pickard GE.

J Comp Neurol. 2003 Jun 2;460(3):380-93.

PMID:
12692856
8.
9.

Retinal research using the perfused mammalian eye.

Niemeyer G.

Prog Retin Eye Res. 2001 May;20(3):289-318. Review.

PMID:
11286895
10.
11.

Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin.

Lin B, Koizumi A, Tanaka N, Panda S, Masland RH.

Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):16009-14. doi: 10.1073/pnas.0806114105. Epub 2008 Oct 3.

12.

Age-dependent changes in the regulation mechanisms for intracellular calcium ions in ganglion cells of the mouse retina.

Mann M, Haq W, Zabel T, Guenther E, Zrenner E, Ladewig T.

Eur J Neurosci. 2005 Dec;22(11):2735-43.

PMID:
16324107
13.

Multiple photoreceptors contribute to nonimage-forming visual functions predominantly through melanopsin-containing retinal ganglion cells.

Güler AD, Altimus CM, Ecker JL, Hattar S.

Cold Spring Harb Symp Quant Biol. 2007;72:509-15. doi: 10.1101/sqb.2007.72.074. Review.

PMID:
18522518
14.

Segregation of on and off bipolar cell axonal arbors in the absence of retinal ganglion cells.

Günhan-Agar E, Kahn D, Chalupa LM.

J Neurosci. 2000 Jan 1;20(1):306-14.

15.

Temporal contrast adaptation in salamander bipolar cells.

Rieke F.

J Neurosci. 2001 Dec 1;21(23):9445-54.

16.
17.

Ectopic photoreceptors and cone bipolar cells in the developing and mature retina.

Günhan E, van der List D, Chalupa LM.

J Neurosci. 2003 Feb 15;23(4):1383-9.

18.

Spike-dependent GABA inputs to bipolar cell axon terminals contribute to lateral inhibition of retinal ganglion cells.

Shields CR, Lukasiewicz PD.

J Neurophysiol. 2003 May;89(5):2449-58. Epub 2002 Nov 13.

19.

Dietary omega-3 fatty acids and ganglion cell function.

Nguyen CT, Vingrys AJ, Bui BV.

Invest Ophthalmol Vis Sci. 2008 Aug;49(8):3586-94. doi: 10.1167/iovs.08-1735. Epub 2008 May 9.

PMID:
18469188
20.

Shift of intracellular chloride concentration in ganglion and amacrine cells of developing mouse retina.

Zhang LL, Pathak HR, Coulter DA, Freed MA, Vardi N.

J Neurophysiol. 2006 Apr;95(4):2404-16. Epub 2005 Dec 21.

Supplemental Content

Support Center