Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 89

1.

Extremely low frequency plasmons in metallic mesostructures.

Pendry JB, Holden AJ, Stewart WJ, Youngs I I.

Phys Rev Lett. 1996 Jun 17;76(25):4773-4776. No abstract available.

PMID:
10061377
2.

Comment on "extremely low frequency plasmons in metallic mesostructures".

Walser RM, Valanju AP, Valanju PM.

Phys Rev Lett. 2001 Sep 10;87(11):119701. Epub 2001 Aug 27. No abstract available.

PMID:
11531556
3.

Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles.

Kravets VG, Schedin F, Grigorenko AN.

Phys Rev Lett. 2008 Aug 22;101(8):087403. Epub 2008 Aug 22.

PMID:
18764660
4.

Optical sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles: sensitivity considerations.

Kvasnicka P, Homola J.

Biointerphases. 2008 Sep;3(3):FD4-11. doi: 10.1116/1.2994687.

PMID:
20408699
5.

Size-dependence of the Lorentz friction for surface plasmons in metallic nanospheres.

Jacak WA.

Opt Express. 2015 Feb 23;23(4):4472-81. doi: 10.1364/OE.23.004472.

PMID:
25836484
6.

Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures.

Gan Q, Fu Z, Ding YJ, Bartoli FJ.

Phys Rev Lett. 2008 Jun 27;100(25):256803. Epub 2008 Jun 27. Erratum in: Phys Rev Lett. 2008 Oct 17;101(16):169903.

PMID:
18643690
7.

Numerical simulation of nanolithography with the subwavelength metallic grating waveguide structure.

Jiao X, Wang P, Zhang D, Tang L, Xie J, Ming H.

Opt Express. 2006 May 29;14(11):4850-60.

PMID:
19516643
8.

Nanostructure-mediated launching and detection of 2D surface plasmons.

Day JK, Neumann O, Grady NK, Halas NJ.

ACS Nano. 2010 Dec 28;4(12):7566-72. doi: 10.1021/nn102003c. Epub 2010 Nov 19.

PMID:
21090584
9.

Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits.

Cao Q, Lalanne P.

Phys Rev Lett. 2002 Feb 4;88(5):057403. Epub 2002 Jan 18.

PMID:
11863777
10.

Low-energy acoustic plasmons at metal surfaces.

Diaconescu B, Pohl K, Vattuone L, Savio L, Hofmann P, Silkin VM, Pitarke JM, Chulkov EV, Echenique PM, Farías D, Rocca M.

Nature. 2007 Jul 5;448(7149):57-9.

PMID:
17611537
11.

Efficient generation of propagating plasmons by electron beams.

Cai W, Sainidou R, Xu J, Polman A, García de Abajo FJ.

Nano Lett. 2009 Mar;9(3):1176-81. doi: 10.1021/nl803825n.

PMID:
19227997
12.

Plasmonic properties of metallic nanoparticles: the effects of size quantization.

Townsend E, Bryant GW.

Nano Lett. 2012 Jan 11;12(1):429-34. doi: 10.1021/nl2037613. Epub 2011 Dec 22.

PMID:
22181554
13.

Dirac-like plasmons in honeycomb lattices of metallic nanoparticles.

Weick G, Woollacott C, Barnes WL, Hess O, Mariani E.

Phys Rev Lett. 2013 Mar 8;110(10):106801. Epub 2013 Mar 5.

PMID:
23521276
14.

Nanoparticle-tuned assembly and disassembly of mesostructured silica hybrids.

Warren SC, Disalvo FJ, Wiesner U.

Nat Mater. 2007 Feb;6(2):156-61. Epub 2007 Jan 21. Erratum in: Nat Mater. 2007 Mar;6(3):248.

PMID:
17237791
15.

Are volume plasmons excitable by classical light?

Höflich K, Gösele U, Christiansen S.

Phys Rev Lett. 2009 Aug 21;103(8):087404. Epub 2009 Aug 20.

PMID:
19792762
16.

Ultraconfined interlaced plasmons.

Morgado TA, Marcos JS, Silveirinha MG, Maslovski SI.

Phys Rev Lett. 2011 Aug 5;107(6):063903. Epub 2011 Aug 3.

PMID:
21902326
17.

Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering.

Perney NM, Baumberg JJ, Zoorob ME, Charlton MD, Mahnkopf S, Netti CM.

Opt Express. 2006 Jan 23;14(2):847-57.

PMID:
19503404
18.
19.

Metallic nano-particles for trapping light.

Tang Y, Vlahovic B.

Nanoscale Res Lett. 2013 Feb 7;8(1):65. doi: 10.1186/1556-276X-8-65.

20.

Mapping plasmons at the nanometer scale in an electron microscope.

Kociak M, Stéphan O.

Chem Soc Rev. 2014 Jun 7;43(11):3865-83. doi: 10.1039/c3cs60478k. Epub 2014 Mar 6.

PMID:
24604161

Supplemental Content

Support Center