Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

A coarse-grained red blood cell membrane model to study stomatocyte-discocyte-echinocyte morphologies.

Geekiyanage NM, Balanant MA, Sauret E, Saha S, Flower R, Lim CT, Gu Y.

PLoS One. 2019 Apr 19;14(4):e0215447. doi: 10.1371/journal.pone.0215447. eCollection 2019.

2.
3.

Elastic energy of the discocyte-stomatocyte transformation.

Muñoz S, Sebastián JL, Sancho M, Alvarez G.

Biochim Biophys Acta. 2014 Mar;1838(3):950-6. doi: 10.1016/j.bbamem.2013.10.020. Epub 2013 Nov 2.

4.

Elastic properties of the red blood cell membrane that determine echinocyte deformability.

Kuzman D, Svetina S, Waugh RE, Zeks B.

Eur Biophys J. 2004 Feb;33(1):1-15. Epub 2003 Sep 12.

PMID:
13680208
5.

Amphiphile induced echinocyte-spheroechinocyte transformation of red blood cell shape.

Iglic A, Kralj-Iglic V, Hägerstrand H.

Eur Biophys J. 1998;27(4):335-9.

PMID:
9691462
6.
7.

On the mechanism of stomatocyte-echinocyte transformations of red blood cells: experiment and theoretical model.

Tachev KD, Danov KD, Kralchevsky PA.

Colloids Surf B Biointerfaces. 2004 Mar 15;34(2):123-40.

PMID:
15261082
8.

The cooperative role of membrane skeleton and bilayer in the mechanical behaviour of red blood cells.

Svetina S, Kuzman D, Waugh RE, Ziherl P, Zeks B.

Bioelectrochemistry. 2004 May;62(2):107-13. Review.

PMID:
15039011
9.
10.

Stomatocyte-discocyte-echinocyte sequence of the human red blood cell: evidence for the bilayer- couple hypothesis from membrane mechanics.

Lim H W G, Wortis M, Mukhopadhyay R.

Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16766-9. Epub 2002 Dec 6.

11.
12.

Two-dimensional strain-hardening membrane model for large deformation behavior of multiple red blood cells in high shear conditions.

Ye SS, Ng YC, Tan J, Leo HL, Kim S.

Theor Biol Med Model. 2014 May 13;11:19. doi: 10.1186/1742-4682-11-19.

13.

Shapes of Red Blood Cells: Comparison of 3D Confocal Images with the Bilayer-Couple Model.

Khairy K, Foo J, Howard J.

Cell Mol Bioeng. 2010 Sep 1;1(2-3):173-181.

14.

Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low-dimensional models of red blood cells.

Pan W, Fedosov DA, Caswell B, Karniadakis GE.

Microvasc Res. 2011 Sep;82(2):163-70. doi: 10.1016/j.mvr.2011.05.006. Epub 2011 May 27.

15.

Investigation of red blood cell mechanical properties using AFM indentation and coarse-grained particle method.

Barns S, Balanant MA, Sauret E, Flower R, Saha S, Gu Y.

Biomed Eng Online. 2017 Dec 19;16(1):140. doi: 10.1186/s12938-017-0429-5.

16.

Three-dimensional counting of morphologically normal human red blood cells via digital holographic microscopy.

Yi F, Moon I, Lee YH.

J Biomed Opt. 2015 Jan;20(1):016005. doi: 10.1117/1.JBO.20.1.016005.

PMID:
25567613
17.

Interaction of injectable neurotropic drugs with the red cell membrane.

Reinhart WH, Lubszky S, Thöny S, Schulzki T.

Toxicol In Vitro. 2014 Oct;28(7):1274-9. doi: 10.1016/j.tiv.2014.06.008. Epub 2014 Jul 2.

PMID:
24997296
18.

Phospholipid membrane bending as assessed by the shape sequence of giant oblate phospholipid vesicles.

Majhenc J, Bozic B, Svetina S, Zeks B.

Biochim Biophys Acta. 2004 Aug 30;1664(2):257-66.

19.

Analysis of radiofrequency energy stored in the altered shapes: Stomatocyte-echinocyte of human erythrocytes.

Muñoz S, Sebastián JL, Sancho M, Martínez G.

Bioelectrochemistry. 2010 Feb;77(2):158-61. doi: 10.1016/j.bioelechem.2009.07.006. Epub 2009 Jul 21.

PMID:
19665436
20.

Coarse-grained red blood cell model with accurate mechanical properties, rheology and dynamics.

Fedosov DA, Caswell B, Karniadakis GE.

Conf Proc IEEE Eng Med Biol Soc. 2009;2009:4266-9. doi: 10.1109/IEMBS.2009.5334585.

PMID:
19965026

Supplemental Content

Support Center