Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

Deletion of regulator-encoding genes fadR, fabR and iclR to increase L-threonine production in Escherichia coli.

Yang J, Fang Y, Wang J, Wang C, Zhao L, Wang X.

Appl Microbiol Biotechnol. 2019 Jun;103(11):4549-4564. doi: 10.1007/s00253-019-09818-8. Epub 2019 Apr 18.

PMID:
31001742
2.

Increasing L-threonine production in Escherichia coli by engineering the glyoxylate shunt and the L-threonine biosynthesis pathway.

Zhao H, Fang Y, Wang X, Zhao L, Wang J, Li Y.

Appl Microbiol Biotechnol. 2018 Jul;102(13):5505-5518. doi: 10.1007/s00253-018-9024-3. Epub 2018 Apr 30.

PMID:
29713792
3.

Pathway construction and metabolic engineering for fermentative production of ectoine in Escherichia coli.

Ning Y, Wu X, Zhang C, Xu Q, Chen N, Xie X.

Metab Eng. 2016 Jul;36:10-18. doi: 10.1016/j.ymben.2016.02.013. Epub 2016 Mar 9.

PMID:
26969253
4.

Metabolic engineering of Escherichia coli for the production of fumaric acid.

Song CW, Kim DI, Choi S, Jang JW, Lee SY.

Biotechnol Bioeng. 2013 Jul;110(7):2025-34. doi: 10.1002/bit.24868. Epub 2013 Mar 1.

PMID:
23436277
5.

Effect of iclR and arcA knockouts on biomass formation and metabolic fluxes in Escherichia coli K12 and its implications on understanding the metabolism of Escherichia coli BL21 (DE3).

Waegeman H, Beauprez J, Moens H, Maertens J, De Mey M, Foulquié-Moreno MR, Heijnen JJ, Charlier D, Soetaert W.

BMC Microbiol. 2011 Apr 11;11:70. doi: 10.1186/1471-2180-11-70.

6.

Construction of an L-serine producing Escherichia coli via metabolic engineering.

Gu P, Yang F, Su T, Li F, Li Y, Qi Q.

J Ind Microbiol Biotechnol. 2014 Sep;41(9):1443-50. doi: 10.1007/s10295-014-1476-6. Epub 2014 Jul 6.

PMID:
24997624
7.

Activation of glyoxylate pathway without the activation of its related gene in succinate-producing engineered Escherichia coli.

Zhu LW, Li XH, Zhang L, Li HM, Liu JH, Yuan ZP, Chen T, Tang YJ.

Metab Eng. 2013 Nov;20:9-19. doi: 10.1016/j.ymben.2013.07.004. Epub 2013 Jul 19.

PMID:
23876414
8.

Role of gene fadR in Escherichia coli acetate metabolism.

Maloy SR, Nunn WD.

J Bacteriol. 1981 Oct;148(1):83-90.

9.

Modification of glycolysis and its effect on the production of L-threonine in Escherichia coli.

Xie X, Liang Y, Liu H, Liu Y, Xu Q, Zhang C, Chen N.

J Ind Microbiol Biotechnol. 2014 Jun;41(6):1007-15. doi: 10.1007/s10295-014-1436-1. Epub 2014 Mar 27.

PMID:
24671569
10.

Chromosome engineering of Escherichia coli for constitutive production of salvianic acid A.

Zhou L, Ding Q, Jiang GZ, Liu ZN, Wang HY, Zhao GR.

Microb Cell Fact. 2017 May 16;16(1):84. doi: 10.1186/s12934-017-0700-2.

11.

Escherichia coli W as a new platform strain for the enhanced production of L-valine by systems metabolic engineering.

Park JH, Jang YS, Lee JW, Lee SY.

Biotechnol Bioeng. 2011 May;108(5):1140-7. doi: 10.1002/bit.23044. Epub 2011 Jan 25.

PMID:
21191998
12.

Optimization of fermentation conditions for the biosynthesis of L-threonine by Escherichia coli.

Chen N, Huang J, Feng ZB, Yu L, Xu QY, Wen TY.

Appl Biochem Biotechnol. 2009 Sep;158(3):595-604. doi: 10.1007/s12010-008-8385-y. Epub 2008 Oct 17.

PMID:
18931947
13.

Rewiring FadR regulon for the selective production of ω-hydroxy palmitic acid from glucose in Escherichia coli.

Kim J, Yoo HW, Kim M, Kim EJ, Sung C, Lee PG, Park BG, Kim BG.

Metab Eng. 2018 May;47:414-422. doi: 10.1016/j.ymben.2018.04.021. Epub 2018 Apr 30.

PMID:
29719215
14.

Metabolic engineering of a reduced-genome strain of Escherichia coli for L-threonine production.

Lee JH, Sung BH, Kim MS, Blattner FR, Yoon BH, Kim JH, Kim SC.

Microb Cell Fact. 2009 Jan 7;8:2. doi: 10.1186/1475-2859-8-2.

15.

Engineering Escherichia coli to increase plasmid DNA production in high cell-density cultivations in batch mode.

Borja GM, Meza Mora E, Barrón B, Gosset G, Ramírez OT, Lara AR.

Microb Cell Fact. 2012 Sep 19;11:132. doi: 10.1186/1475-2859-11-132.

16.

Complex binding of the FabR repressor of bacterial unsaturated fatty acid biosynthesis to its cognate promoters.

Feng Y, Cronan JE.

Mol Microbiol. 2011 Apr;80(1):195-218. doi: 10.1111/j.1365-2958.2011.07564.x. Epub 2011 Feb 21.

17.

Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine.

Qian ZG, Xia XX, Lee SY.

Biotechnol Bioeng. 2009 Nov 1;104(4):651-62. doi: 10.1002/bit.22502.

PMID:
19714672
18.

Metabolic engineering of Escherichia coli for the production of 1-propanol.

Choi YJ, Park JH, Kim TY, Lee SY.

Metab Eng. 2012 Sep;14(5):477-86. doi: 10.1016/j.ymben.2012.07.006. Epub 2012 Aug 1.

PMID:
22871504
19.

Reassessment of the Genetic Regulation of Fatty Acid Synthesis in Escherichia coli: Global Positive Control by the Dual Functional Regulator FadR.

My L, Ghandour Achkar N, Viala JP, Bouveret E.

J Bacteriol. 2015 Jun;197(11):1862-72. doi: 10.1128/JB.00064-15. Epub 2015 Mar 23.

20.

Hyperproduction of poly(4-hydroxybutyrate) from glucose by recombinant Escherichia coli.

Zhou XY, Yuan XX, Shi ZY, Meng DC, Jiang WJ, Wu LP, Chen JC, Chen GQ.

Microb Cell Fact. 2012 May 2;11:54. doi: 10.1186/1475-2859-11-54.

Supplemental Content

Support Center