Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Directional Transportation of a Helic[6]arene along a Nonsymmetric Molecular Axle.

Zhou HY, Han Y, Shi Q, Chen CF.

J Org Chem. 2019 Mar 29. doi: 10.1021/acs.joc.9b00229. [Epub ahead of print]

PMID:
30900452
2.

Directional Molecular Transportation Based on a Catalytic Stopper-Leaving Rotaxane System.

Meng Z, Xiang JF, Chen CF.

J Am Chem Soc. 2016 May 4;138(17):5652-8. doi: 10.1021/jacs.6b01852. Epub 2016 Apr 21.

PMID:
27078221
3.

Directional Shuttling of a Stimuli-Responsive Cone-Like Macrocycle on a Single-State Symmetric Dumbbell Axle.

Cui JS, Ba QK, Ke H, Valkonen A, Rissanen K, Jiang W.

Angew Chem Int Ed Engl. 2018 Jun 25;57(26):7809-7814. doi: 10.1002/anie.201803349. Epub 2018 May 23.

PMID:
29696797
4.

Complexation Between (O-Methyl)6 -2,6-Helic[6]arene and Tertiary Ammonium Salts: Acid/Base- or Chloride-Ion-Responsive Host-Guest Systems and Synthesis of [2]Rotaxane.

Shi Q, Han Y, Chen CF.

Chem Asian J. 2017 Oct 5;12(19):2576-2582. doi: 10.1002/asia.201700857. Epub 2017 Aug 16.

PMID:
28703463
5.

Toward directionally controlled molecular motions and kinetic intra- and intermolecular self-sorting: threading processes of nonsymmetric wheel and axle components.

Arduini A, Bussolati R, Credi A, Secchi A, Silvi S, Semeraro M, Venturi M.

J Am Chem Soc. 2013 Jul 3;135(26):9924-30. doi: 10.1021/ja404270c. Epub 2013 Jun 25.

PMID:
23751139
6.

Towards controlling the threading direction of a calix[6]arene wheel by using nonsymmetric axles.

Arduini A, Bussolati R, Credi A, Faimani G, Garaudée S, Pochini A, Secchi A, Semeraro M, Silvi S, Venturi M.

Chemistry. 2009;15(13):3230-42. doi: 10.1002/chem.200801926.

PMID:
19206116
7.

[2]Rotaxane with multiple functional groups.

Saha S, Santra S, Akhuli B, Ghosh P.

J Org Chem. 2014 Nov 21;79(22):11170-8. doi: 10.1021/jo502235z. Epub 2014 Nov 10.

PMID:
25353057
8.

A Route to Enantiopure ( O-Methyl)6-2,6-Helic[6]arenes: Synthesis of Hexabromo-Substituted 2,6-Helic[6]arene Derivatives and Their Suzuki-Miyaura Coupling Reactions.

Wang JQ, Li J, Zhang GW, Chen CF.

J Org Chem. 2018 Oct 5;83(19):11532-11540. doi: 10.1021/acs.joc.8b01437. Epub 2018 Sep 10.

PMID:
30168321
9.

Formation of charge-transfer complexes based on a tropylium cation and 2,6-helic[6]arenes: a visible redox stimulus-responsive process.

Zhang GW, Shi Q, Chen CF.

Chem Commun (Camb). 2017 Feb 23;53(17):2582-2585. doi: 10.1039/c7cc00600d.

PMID:
28191578
10.

Preparation of Pillar[5]arene-Based [2]Rotaxanes by a Stopper-Exchange Strategy.

Nierengarten I, Meichsner E, Holler M, Pieper P, Deschenaux R, Delavaux-Nicot B, Nierengarten JF.

Chemistry. 2018 Jan 2;24(1):169-177. doi: 10.1002/chem.201703997. Epub 2017 Nov 23.

PMID:
29072795
11.

Solvent- and light-controlled unidirectional transit of a nonsymmetric molecular axle through a nonsymmetric molecular wheel.

Arduini A, Bussolati R, Credi A, Monaco S, Secchi A, Silvi S, Venturi M.

Chemistry. 2012 Dec 7;18(50):16203-13. doi: 10.1002/chem.201201625. Epub 2012 Oct 22.

PMID:
23090856
12.

Complexation of Racemic 2,6-Helic[6]arene and Its Hexamethyl-Substituted Derivative with Quaternary Ammonium Salts, N-Heterocyclic Salts, and Tetracyanoquinodimethane.

Zhang GW, Li PF, Wang HX, Han Y, Chen CF.

Chemistry. 2017 Mar 13;23(15):3735-3742. doi: 10.1002/chem.201605394. Epub 2017 Feb 16.

PMID:
28054424
13.

A double-stranded DNA rotaxane.

Ackermann D, Schmidt TL, Hannam JS, Purohit CS, Heckel A, Famulok M.

Nat Nanotechnol. 2010 Jun;5(6):436-42. doi: 10.1038/nnano.2010.65. Epub 2010 Apr 18.

PMID:
20400967
14.

Light-powered, artificial molecular pumps: a minimalistic approach.

Ragazzon G, Baroncini M, Silvi S, Venturi M, Credi A.

Beilstein J Nanotechnol. 2015 Nov 2;6:2096-104. doi: 10.3762/bjnano.6.214. eCollection 2015. Review.

15.

Switchable Complexation between (O-Methyl)6-2,6-helic[6]arene and Protonated Pyridinium Salts Controlled by Acid/Base and Photoacid.

Shi Q, Chen CF.

Org Lett. 2017 Jun 16;19(12):3175-3178. doi: 10.1021/acs.orglett.7b01296. Epub 2017 May 30.

PMID:
28558228
16.

Fixed or invertible calixarene-based directional shuttles.

Pierro T, Gaeta C, Talotta C, Casapullo A, Neri P.

Org Lett. 2011 May 20;13(10):2650-3. doi: 10.1021/ol200753c. Epub 2011 Apr 29.

PMID:
21526867
17.

Endo-complexation of alkylammonium ions by calix[4]arene cavity: facilitating cation-π interactions through the weakly coordinating anion approach.

Talotta C, Gaeta C, Neri P.

J Org Chem. 2014 Oct 17;79(20):9842-6. doi: 10.1021/jo5016689. Epub 2014 Sep 26.

PMID:
25216180
18.

Through-the-annulus threading of the larger calix[8]arene macrocycle.

Gaeta C, Talotta C, Margarucci L, Casapullo A, Neri P.

J Org Chem. 2013 Aug 2;78(15):7627-38. doi: 10.1021/jo401206j. Epub 2013 Jul 23.

PMID:
23834296
19.

Distinguishing Two Ammonium and Triazolium Sites of Interaction in a Three-Station [2]Rotaxane Molecular Shuttle.

Waelès P, Fournel-Marotte K, Coutrot F.

Chemistry. 2017 Aug 25;23(48):11529-11539. doi: 10.1002/chem.201701912. Epub 2017 Jul 24.

PMID:
28594431
20.

Cyclic host liquids for facile and high-yield synthesis of [2]rotaxanes.

Ogoshi T, Aoki T, Shiga R, Iizuka R, Ueda S, Demachi K, Yamafuji D, Kayama H, Yamagishi TA.

J Am Chem Soc. 2012 Dec 19;134(50):20322-5. doi: 10.1021/ja310757p. Epub 2012 Dec 6.

PMID:
23205818

Supplemental Content

Support Center