Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrOx/AlPO-18 bifunctional catalysts.

Su J, Zhou H, Liu S, Wang C, Jiao W, Wang Y, Liu C, Ye Y, Zhang L, Zhao Y, Liu H, Wang D, Yang W, Xie Z, He M.

Nat Commun. 2019 Mar 21;10(1):1297. doi: 10.1038/s41467-019-09336-1.

2.

Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates.

Liu X, Zhou W, Yang Y, Cheng K, Kang J, Zhang L, Zhang G, Min X, Zhang Q, Wang Y.

Chem Sci. 2018 Apr 30;9(20):4708-4718. doi: 10.1039/c8sc01597j. eCollection 2018 May 28.

3.

Direct and Highly Selective Conversion of Synthesis Gas into Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon-Carbon Coupling.

Cheng K, Gu B, Liu X, Kang J, Zhang Q, Wang Y.

Angew Chem Int Ed Engl. 2016 Apr 4;55(15):4725-8. doi: 10.1002/anie.201601208. Epub 2016 Mar 9.

PMID:
26961855
4.

Co-Based Catalysts Derived from Layered-Double-Hydroxide Nanosheets for the Photothermal Production of Light Olefins.

Li Z, Liu J, Zhao Y, Waterhouse GIN, Chen G, Shi R, Zhang X, Liu X, Wei Y, Wen XD, Wu LZ, Tung CH, Zhang T.

Adv Mater. 2018 Aug;30(31):e1800527. doi: 10.1002/adma.201800527. Epub 2018 Jun 5.

PMID:
29873126
5.

Selective conversion of syngas to light olefins.

Jiao F, Li J, Pan X, Xiao J, Li H, Ma H, Wei M, Pan Y, Zhou Z, Li M, Miao S, Li J, Zhu Y, Xiao D, He T, Yang J, Qi F, Fu Q, Bao X.

Science. 2016 Mar 4;351(6277):1065-8. doi: 10.1126/science.aaf1835.

6.

Cobalt carbide nanoprisms for direct production of lower olefins from syngas.

Zhong L, Yu F, An Y, Zhao Y, Sun Y, Li Z, Lin T, Lin Y, Qi X, Dai Y, Gu L, Hu J, Jin S, Shen Q, Wang H.

Nature. 2016 Oct 6;538(7623):84-87. doi: 10.1038/nature19786.

PMID:
27708303
7.

Shape-Selective Zeolites Promote Ethylene Formation from Syngas via a Ketene Intermediate.

Jiao F, Pan X, Gong K, Chen Y, Li G, Bao X.

Angew Chem Int Ed Engl. 2018 Apr 16;57(17):4692-4696. doi: 10.1002/anie.201801397. Epub 2018 Mar 23.

PMID:
29498167
8.

Directly Converting Syngas to Linear α-Olefins over Core-Shell Fe3O4@MnO2 Catalysts.

Wang J, Xu Y, Ma G, Lin J, Wang H, Zhang C, Ding M.

ACS Appl Mater Interfaces. 2018 Dec 19;10(50):43578-43587. doi: 10.1021/acsami.8b11820. Epub 2018 Dec 6.

PMID:
30484308
9.

Cobalt-Iron-Manganese Catalysts for the Conversion of End-of-Life-Tire-Derived Syngas into Light Terminal Olefins.

Falkenhagen JP, Maisonneuve L, Paalanen PP, Coste N, Malicki N, Weckhuysen BM.

Chemistry. 2018 Mar 26;24(18):4597-4606. doi: 10.1002/chem.201704191. Epub 2018 Mar 1.

PMID:
29493817
10.

Direct Production of Higher Oxygenates by Syngas Conversion over a Multifunctional Catalyst.

Lin T, Qi X, Wang X, Xia L, Wang C, Yu F, Wang H, Li S, Zhong L, Sun Y.

Angew Chem Int Ed Engl. 2019 Mar 26;58(14):4627-4631. doi: 10.1002/anie.201814611. Epub 2019 Feb 28.

PMID:
30710403
11.

Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34.

Liu X, Wang M, Zhou C, Zhou W, Cheng K, Kang J, Zhang Q, Deng W, Wang Y.

Chem Commun (Camb). 2018 Jan 7;54(2):140-143. doi: 10.1039/c7cc08642c. Epub 2017 Dec 6.

PMID:
29210376
12.

Recent Advances in Direct Synthesis of Value-Added Aromatic Chemicals from Syngas by Cascade Reactions over Bifunctional Catalysts.

Kasipandi S, Bae JW.

Adv Mater. 2019 Feb 15:e1803390. doi: 10.1002/adma.201803390. [Epub ahead of print] Review.

PMID:
30767328
13.

Direct conversion of syngas to aromatics.

Yang J, Pan X, Jiao F, Li J, Bao X.

Chem Commun (Camb). 2017 Oct 10;53(81):11146-11149. doi: 10.1039/c7cc04768a.

PMID:
28857092
14.

Multinuclear group 4 catalysis: olefin polymerization pathways modified by strong metal-metal cooperative effects.

McInnis JP, Delferro M, Marks TJ.

Acc Chem Res. 2014 Aug 19;47(8):2545-57. doi: 10.1021/ar5001633. Epub 2014 Jul 30.

PMID:
25075755
15.

M2(m-dobdc) (M = Mn, Fe, Co, Ni) Metal-Organic Frameworks as Highly Selective, High-Capacity Adsorbents for Olefin/Paraffin Separations.

Bachman JE, Kapelewski MT, Reed DA, Gonzalez MI, Long JR.

J Am Chem Soc. 2017 Nov 1;139(43):15363-15370. doi: 10.1021/jacs.7b06397. Epub 2017 Oct 19.

PMID:
28981259
16.

Reductive Transformation of Layered-Double-Hydroxide Nanosheets to Fe-Based Heterostructures for Efficient Visible-Light Photocatalytic Hydrogenation of CO.

Zhao Y, Li Z, Li M, Liu J, Liu X, Waterhouse GIN, Wang Y, Zhao J, Gao W, Zhang Z, Long R, Zhang Q, Gu L, Liu X, Wen X, Ma D, Wu LZ, Tung CH, Zhang T.

Adv Mater. 2018 Jul 31:e1803127. doi: 10.1002/adma.201803127. [Epub ahead of print]

PMID:
30066491
17.

Improved light olefin yield from methyl bromide coupling over modified SAPO-34 molecular sieves.

Zhang A, Sun S, Komon ZJ, Osterwalder N, Gadewar S, Stoimenov P, Auerbach DJ, Stucky GD, McFarland EW.

Phys Chem Chem Phys. 2011 Feb 21;13(7):2550-5. doi: 10.1039/c0cp01985b. Epub 2011 Jan 4.

PMID:
21203621
18.

Ti-containing mesoporous organosilica as a photocatalyst for selective olefin epoxidation.

Morishita M, Shiraishi Y, Hirai T.

J Phys Chem B. 2006 Sep 14;110(36):17898-905.

PMID:
16956279
20.

Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity.

Olsbye U, Svelle S, Bjørgen M, Beato P, Janssens TV, Joensen F, Bordiga S, Lillerud KP.

Angew Chem Int Ed Engl. 2012 Jun 11;51(24):5810-31. doi: 10.1002/anie.201103657. Epub 2012 Apr 18.

PMID:
22511469

Supplemental Content

Support Center