Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Functional Mechanisms Underlying the Antimicrobial Activity of the Oryza sativa Trx-like Protein.

Park SC, Kim IR, Hwang JE, Kim JY, Jung YJ, Choi W, Lee Y, Jang MK, Lee JR.

Int J Mol Sci. 2019 Mar 20;20(6). pii: E1413. doi: 10.3390/ijms20061413.

2.

Mechanism of action of novel synthetic dodecapeptides against Candida albicans.

Maurya IK, Thota CK, Sharma J, Tupe SG, Chaudhary P, Singh MK, Thakur IS, Deshpande M, Prasad R, Chauhan VS.

Biochim Biophys Acta. 2013 Nov;1830(11):5193-203. doi: 10.1016/j.bbagen.2013.07.016. Epub 2013 Jul 20.

PMID:
23876294
3.

Antifungal membranolytic activity of the tyrocidines against filamentous plant fungi.

Rautenbach M, Troskie AM, Vosloo JA, Dathe ME.

Biochimie. 2016 Nov;130:122-131. doi: 10.1016/j.biochi.2016.06.008. Epub 2016 Jun 18.

PMID:
27328781
4.

Antioxidant genes of plants and fungal pathogens are distinctly regulated during disease development in different Rhizoctonia solani pathosystems.

Samsatly J, Copley TR, Jabaji SH.

PLoS One. 2018 Feb 21;13(2):e0192682. doi: 10.1371/journal.pone.0192682. eCollection 2018.

5.

Binding of the Magnaporthe oryzae Chitinase MoChia1 by a Rice Tetratricopeptide Repeat Protein Allows Free Chitin to Trigger Immune Responses.

Yang C, Yu Y, Huang J, Meng F, Pang J, Zhao Q, Islam MA, Xu N, Tian Y, Liu J.

Plant Cell. 2019 Jan;31(1):172-188. doi: 10.1105/tpc.18.00382. Epub 2019 Jan 4.

PMID:
30610168
6.

Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.

Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E.

Rev Environ Contam Toxicol. 2014;232:1-44. doi: 10.1007/978-3-319-06746-9_1. Review.

PMID:
24984833
7.

Stress defense mechanisms of NADPH-dependent thioredoxin reductases (NTRs) in plants.

Cha JY, Barman DN, Kim MG, Kim WY.

Plant Signal Behav. 2015;10(5):e1017698. doi: 10.1080/15592324.2015.1017698. Review.

8.

Peptide from thaumatin plant protein exhibits selective anticandidal activity by inducing apoptosis via membrane receptor.

Lopes FES, da Costa HPS, Souza PFN, Oliveira JPB, Ramos MV, Freire JEC, Jucá TL, Freitas CDT.

Phytochemistry. 2019 Mar;159:46-55. doi: 10.1016/j.phytochem.2018.12.006. Epub 2018 Dec 19.

PMID:
30577001
9.

Antifungal activity of PvD1 defensin involves plasma membrane permeabilization, inhibition of medium acidification, and induction of ROS in fungi cells.

Mello EO, Ribeiro SF, Carvalho AO, Santos IS, Da Cunha M, Santa-Catarina C, Gomes VM.

Curr Microbiol. 2011 Apr;62(4):1209-17. doi: 10.1007/s00284-010-9847-3. Epub 2010 Dec 19.

PMID:
21170711
10.

Surface α-1,3-glucan facilitates fungal stealth infection by interfering with innate immunity in plants.

Fujikawa T, Sakaguchi A, Nishizawa Y, Kouzai Y, Minami E, Yano S, Koga H, Meshi T, Nishimura M.

PLoS Pathog. 2012;8(8):e1002882. doi: 10.1371/journal.ppat.1002882. Epub 2012 Aug 23.

11.

The antifungal activity of RsAFP2, a plant defensin from raphanus sativus, involves the induction of reactive oxygen species in Candida albicans.

Aerts AM, François IE, Meert EM, Li QT, Cammue BP, Thevissen K.

J Mol Microbiol Biotechnol. 2007;13(4):243-7.

PMID:
17827975
12.

Reactive oxygen species generated in chloroplasts contribute to tobacco leaf infection by the necrotrophic fungus Botrytis cinerea.

Rossi FR, Krapp AR, Bisaro F, Maiale SJ, Pieckenstain FL, Carrillo N.

Plant J. 2017 Dec;92(5):761-773. doi: 10.1111/tpj.13718. Epub 2017 Oct 23.

13.

Molecular mechanism of Arabidopsis thaliana profilins as antifungal proteins.

Park SC, Kim IR, Kim JY, Lee Y, Kim EJ, Jung JH, Jung YJ, Jang MK, Lee JR.

Biochim Biophys Acta Gen Subj. 2018 Dec;1862(12):2545-2554. doi: 10.1016/j.bbagen.2018.07.028. Epub 2018 Jul 26.

PMID:
30056100
14.

The antifungal protein from Aspergillus giganteus causes membrane permeabilization.

Theis T, Wedde M, Meyer V, Stahl U.

Antimicrob Agents Chemother. 2003 Feb;47(2):588-93.

15.
16.

How Does the Sweet Violet (Viola odorata L.) Fight Pathogens and Pests - Cyclotides as a Comprehensive Plant Host Defense System.

Slazak B, Kapusta M, Strömstedt AA, Słomka A, Krychowiak M, Shariatgorji M, Andrén PE, Bohdanowicz J, Kuta E, Göransson U.

Front Plant Sci. 2018 Sep 11;9:1296. doi: 10.3389/fpls.2018.01296. eCollection 2018.

17.

The Janus face of reactive oxygen species in resistance and susceptibility of plants to necrotrophic and biotrophic pathogens.

Barna B, Fodor J, Harrach BD, Pogány M, Király Z.

Plant Physiol Biochem. 2012 Oct;59:37-43. doi: 10.1016/j.plaphy.2012.01.014. Epub 2012 Jan 25. Review.

PMID:
22321616
18.

The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice.

Park CH, Chen S, Shirsekar G, Zhou B, Khang CH, Songkumarn P, Afzal AJ, Ning Y, Wang R, Bellizzi M, Valent B, Wang GL.

Plant Cell. 2012 Nov;24(11):4748-62. doi: 10.1105/tpc.112.105429. Epub 2012 Nov 30.

19.

Salicylic acid stimulates secretion of the normally symplastic enzyme mannitol dehydrogenase: a possible defense against mannitol-secreting fungal pathogens.

Cheng FY, Zamski E, Guo WW, Pharr DM, Williamson JD.

Planta. 2009 Nov;230(6):1093-103. doi: 10.1007/s00425-009-1006-3. Epub 2009 Sep 1.

PMID:
19727802
20.

Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance.

Djonović S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM.

Mol Plant Microbe Interact. 2006 Aug;19(8):838-53.

Supplemental Content

Support Center