Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

A DFT Study of Hydrogen Storage in High-Entropy Alloy TiZrHfScMo.

Hu J, Shen H, Jiang M, Gong H, Xiao H, Liu Z, Sun G, Zu X.

Nanomaterials (Basel). 2019 Mar 20;9(3). pii: E461. doi: 10.3390/nano9030461.

2.

A Novel TiZrHfMoNb High-Entropy Alloy for Solar Thermal Energy Storage.

Shen H, Zhang J, Hu J, Zhang J, Mao Y, Xiao H, Zhou X, Zu X.

Nanomaterials (Basel). 2019 Feb 12;9(2). pii: E248. doi: 10.3390/nano9020248.

3.

Structure and Hydrogenation Properties of a HfNbTiVZr High-Entropy Alloy.

Karlsson D, Ek G, Cedervall J, Zlotea C, Møller KT, Hansen TC, Bednarčík J, Paskevicius M, Sørby MH, Jensen TR, Jansson U, Sahlberg M.

Inorg Chem. 2018 Feb 19;57(4):2103-2110. doi: 10.1021/acs.inorgchem.7b03004. Epub 2018 Feb 1.

PMID:
29389120
4.

Superior hydrogen storage in high entropy alloys.

Sahlberg M, Karlsson D, Zlotea C, Jansson U.

Sci Rep. 2016 Nov 10;6:36770. doi: 10.1038/srep36770.

5.

Ti-V-C-Based Alloy with a FCC Lattice Structure for Hydrogen Storage.

Li B, He L, Li J, Li HW, Lu Z, Shao H.

Molecules. 2019 Feb 2;24(3). pii: E552. doi: 10.3390/molecules24030552.

6.

Reduced enthalpy of metal hydride formation for Mg-Ti nanocomposites produced by spark discharge generation.

Anastasopol A, Pfeiffer TV, Middelkoop J, Lafont U, Canales-Perez RJ, Schmidt-Ott A, Mulder FM, Eijt SW.

J Am Chem Soc. 2013 May 29;135(21):7891-900. doi: 10.1021/ja3123416. Epub 2013 May 15.

PMID:
23651258
7.

Body centered cubic magnesium niobium hydride with facile room temperature absorption and four weight percent reversible capacity.

Tan X, Wang L, Holt CM, Zahiri B, Eikerling MH, Mitlin D.

Phys Chem Chem Phys. 2012 Aug 21;14(31):10904-9. doi: 10.1039/c2cp42136d. Epub 2012 Jul 11.

PMID:
22782120
8.

Hydrogen storage on volleyballene.

Tlahuice-Flores A.

Phys Chem Chem Phys. 2018 Aug 22;20(33):21251-21256. doi: 10.1039/c8cp01987h.

PMID:
30106409
9.

Influence of Defects on the Stability and Hydrogen-Sorption Behavior of Mg-Based Hydrides.

Grbović Novaković J, Novaković N, Kurko S, Milošević Govedarović S, Pantić T, Paskaš Mamula B, Batalović K, Radaković J, Rmuš J, Shelyapina M, Skryabina N, de Rango P, Fruchart D.

Chemphyschem. 2019 Mar 26. doi: 10.1002/cphc.201801125. [Epub ahead of print] Review.

PMID:
30913344
10.

Ab initio investigation of ammonia-borane complexes for hydrogen storage.

Miranda CR, Ceder G.

J Chem Phys. 2007 May 14;126(18):184703.

PMID:
17508820
11.

The nanostructure and hydrogenation reaction of Mg50Co50 BCC alloy prepared by ball-milling.

Matsuda J, Shao H, Nakamura Y, Akiba E.

Nanotechnology. 2009 May 20;20(20):204015. doi: 10.1088/0957-4484/20/20/204015. Epub 2009 Apr 23.

PMID:
19420663
12.

How the hydrogen sorption properties of palladium are modified through interaction with iridium.

Goyhenex C, Piccolo L.

Phys Chem Chem Phys. 2017 Dec 13;19(48):32451-32458. doi: 10.1039/c7cp07155h.

PMID:
29188256
13.

Pyrene: hydrogenation, hydrogen evolution, and π-band model.

Rasmussen JA, Henkelman G, Hammer B.

J Chem Phys. 2011 Apr 28;134(16):164703. doi: 10.1063/1.3563632.

PMID:
21528977
14.

Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor.

von Rohr F, Winiarski MJ, Tao J, Klimczuk T, Cava RJ.

Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):E7144-E7150. Epub 2016 Nov 1.

15.

Influence of W, Mo and Ti trace elements on the phase separation in Al8Co17Cr17Cu8Fe17Ni33 based high entropy alloy.

Manzoni AM, Daoud HM, Voelkl R, Glatzel U, Wanderka N.

Ultramicroscopy. 2015 Dec;159 Pt 2:265-71. doi: 10.1016/j.ultramic.2015.06.009. Epub 2015 Jun 14.

PMID:
26159736
16.

The Different Roles of Entropy and Solubility in High Entropy Alloy Stability.

Ruiz-Yi B, Bunn JK, Stasak D, Mehta A, Besser M, Kramer MJ, Takeuchi I, Hattrick-Simpers J.

ACS Comb Sci. 2016 Sep 12;18(9):596-603. doi: 10.1021/acscombsci.6b00077. Epub 2016 Aug 18.

PMID:
27494349
17.

H2-Binding by Neutral and Multiply Charged Titaniums: Hydrogen Storage Capacity of Titanium Mono- and Dications.

Lee HM, Kim DY, Pak C, Singh NJ, Kim KS.

J Chem Theory Comput. 2011 Apr 12;7(4):969-78. doi: 10.1021/ct1007444. Epub 2011 Mar 16.

PMID:
26606346
18.
19.

A comparative theoretical study of metal functionalized carbon nanocones and carbon nanocone sheets as potential hydrogen storage materials.

Shalabi AS, Soliman KA, Taha HO.

Phys Chem Chem Phys. 2014 Sep 28;16(36):19333-9. doi: 10.1039/c4cp02726d.

PMID:
25099825
20.

High-pressure torsion for new hydrogen storage materials.

Edalati K, Akiba E, Horita Z.

Sci Technol Adv Mater. 2018 Feb 19;19(1):185-193. doi: 10.1080/14686996.2018.1435131. eCollection 2018. Review.

Supplemental Content

Support Center