Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Surface-Enhanced Resonance Raman Scattering-Guided Brain Tumor Surgery Showing Prognostic Benefit in Rat Models.

Han L, Duan W, Li X, Wang C, Jin Z, Zhai Y, Cao C, Chen L, Xu W, Liu Y, Bi YY, Feng J, Mao Y, Yue Q, Zhang XY, Li C.

ACS Appl Mater Interfaces. 2019 Apr 17. doi: 10.1021/acsami.9b00227. [Epub ahead of print]

PMID:
30896915
2.

Guiding Brain-Tumor Surgery via Blood-Brain-Barrier-Permeable Gold Nanoprobes with Acid-Triggered MRI/SERRS Signals.

Gao X, Yue Q, Liu Z, Ke M, Zhou X, Li S, Zhang J, Zhang R, Chen L, Mao Y, Li C.

Adv Mater. 2017 Jun;29(21). doi: 10.1002/adma.201603917. Epub 2017 Mar 15.

PMID:
28295679
3.

Dual-Modality Surface-Enhanced Resonance Raman Scattering and Multispectral Optoacoustic Tomography Nanoparticle Approach for Brain Tumor Delineation.

Neuschmelting V, Harmsen S, Beziere N, Lockau H, Hsu HT, Huang R, Razansky D, Ntziachristos V, Kircher MF.

Small. 2018 Jun;14(23):e1800740. doi: 10.1002/smll.201800740. Epub 2018 May 4.

PMID:
29726109
4.

An EGFRvIII targeted dual-modal gold nanoprobe for imaging-guided brain tumor surgery.

Yue Q, Gao X, Yu Y, Li Y, Hua W, Fan K, Zhang R, Qian J, Chen L, Li C, Mao Y.

Nanoscale. 2017 Jun 14;9(23):7930-7940. doi: 10.1039/c7nr01077j.

PMID:
28569328
5.

Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging.

Harmsen S, Huang R, Wall MA, Karabeber H, Samii JM, Spaliviero M, White JR, Monette S, O'Connor R, Pitter KL, Sastra SA, Saborowski M, Holland EC, Singer S, Olive KP, Lowe SW, Blasberg RG, Kircher MF.

Sci Transl Med. 2015 Jan 21;7(271):271ra7. doi: 10.1126/scitranslmed.3010633.

6.

High Precision Imaging of Microscopic Spread of Glioblastoma with a Targeted Ultrasensitive SERRS Molecular Imaging Probe.

Huang R, Harmsen S, Samii JM, Karabeber H, Pitter KL, Holland EC, Kircher MF.

Theranostics. 2016 May 7;6(8):1075-84. doi: 10.7150/thno.13842. eCollection 2016.

7.

Guiding brain tumor resection using surface-enhanced Raman scattering nanoparticles and a hand-held Raman scanner.

Karabeber H, Huang R, Iacono P, Samii JM, Pitter K, Holland EC, Kircher MF.

ACS Nano. 2014 Oct 28;8(10):9755-66. doi: 10.1021/nn503948b. Epub 2014 Aug 22.

8.
9.

Quantitative surface-enhanced resonant Raman scattering multiplexing of biocompatible gold nanostars for in vitro and ex vivo detection.

Yuan H, Liu Y, Fales AM, Li YL, Liu J, Vo-Dinh T.

Anal Chem. 2013 Jan 2;85(1):208-12. doi: 10.1021/ac302510g. Epub 2012 Dec 14.

10.

Detection of Lymph Node Metastases with SERRS Nanoparticles.

Spaliviero M, Harmsen S, Huang R, Wall MA, Andreou C, Eastham JA, Touijer KA, Scardino PT, Kircher MF.

Mol Imaging Biol. 2016 Oct;18(5):677-85. doi: 10.1007/s11307-016-0932-2.

11.

Surface enhanced resonance Raman spectroscopy (SERRS) for probing through plastic and tissue barriers using a handheld spectrometer.

Nicolson F, Jamieson LE, Mabbott S, Plakas K, Shand NC, Detty MR, Graham D, Faulds K.

Analyst. 2018 Dec 3;143(24):5965-5973. doi: 10.1039/c8an01249k.

PMID:
30225477
12.

Introduction of a standardized multimodality image protocol for navigation-guided surgery of suspected low-grade gliomas.

Mert A, Kiesel B, Wöhrer A, Martínez-Moreno M, Minchev G, Furtner J, Knosp E, Wolfsberger S, Widhalm G.

Neurosurg Focus. 2015 Jan;38(1):E4. doi: 10.3171/2014.10.FOCUS14597.

PMID:
25552284
13.

Folate-Targeted Surface-Enhanced Resonance Raman Scattering Nanoprobe Ratiometry for Detection of Microscopic Ovarian Cancer.

Oseledchyk A, Andreou C, Wall MA, Kircher MF.

ACS Nano. 2017 Feb 28;11(2):1488-1497. doi: 10.1021/acsnano.6b06796. Epub 2017 Jan 4.

14.

Tissue factor-specific ultra-bright SERRS nanostars for Raman detection of pulmonary micrometastases.

Nayak TR, Andreou C, Oseledchyk A, Marcus WD, Wong HC, Massagué J, Kircher MF.

Nanoscale. 2017 Jan 19;9(3):1110-1119. doi: 10.1039/c6nr08217c.

15.

Study of the biodistribution of fluorescein in glioma-infiltrated mouse brain and histopathological correlation of intraoperative findings in high-grade gliomas resected under fluorescein fluorescence guidance.

Diaz RJ, Dios RR, Hattab EM, Burrell K, Rakopoulos P, Sabha N, Hawkins C, Zadeh G, Rutka JT, Cohen-Gadol AA.

J Neurosurg. 2015 Jun;122(6):1360-9. doi: 10.3171/2015.2.JNS132507. Epub 2015 Apr 3.

PMID:
25839919
16.

Noninvasively Imaging Subcutaneous Tumor Xenograft by a Handheld Raman Detector, with the Assistance of an Optical Clearing Agent.

Zhang Y, Liu H, Tang J, Li Z, Zhou X, Zhang R, Chen L, Mao Y, Li C.

ACS Appl Mater Interfaces. 2017 May 31;9(21):17769-17776. doi: 10.1021/acsami.7b04205. Epub 2017 May 17.

PMID:
28474520
17.

High-speed Raman-encoded molecular imaging of freshly excised tissue surfaces with topically applied SERRS nanoparticles.

Wang YW, Yang Q, Kang S, Wall MA, Liu JTC.

J Biomed Opt. 2018 Apr;23(4):1-8. doi: 10.1117/1.JBO.23.4.046005.

18.

Chelator-Free Radiolabeling of SERRS Nanoparticles for Whole-Body PET and Intraoperative Raman Imaging.

Wall MA, Shaffer TM, Harmsen S, Tschaharganeh DF, Huang CH, Lowe SW, Drain CM, Kircher MF.

Theranostics. 2017 Jul 22;7(12):3068-3077. doi: 10.7150/thno.18019. eCollection 2017.

19.

Magnetic immunoassay for cancer biomarker detection based on surface-enhanced resonance Raman scattering from coupled plasmonic nanostructures.

Rong Z, Wang C, Wang J, Wang D, Xiao R, Wang S.

Biosens Bioelectron. 2016 Oct 15;84:15-21. doi: 10.1016/j.bios.2016.04.006. Epub 2016 Apr 5.

PMID:
27149164
20.

Cancer imaging using surface-enhanced resonance Raman scattering nanoparticles.

Harmsen S, Wall MA, Huang R, Kircher MF.

Nat Protoc. 2017 Jul;12(7):1400-1414. doi: 10.1038/nprot.2017.031. Epub 2017 Jun 22.

Supplemental Content

Support Center