Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Isolation and expression analysis of Salt Overly Sensitive gene family in grapevine (Vitisvinifera) in response to salt and PEG stress.

Ma Y, Wang L, Wang J, Zhong Y, Cheng ZM.

PLoS One. 2019 Mar 19;14(3):e0212666. doi: 10.1371/journal.pone.0212666. eCollection 2019.

2.

Transcriptome Sequence Analysis Elaborates a Complex Defensive Mechanism of Grapevine (Vitis vinifera L.) in Response to Salt Stress.

Guan L, Haider MS, Khan N, Nasim M, Jiu S, Fiaz M, Zhu X, Zhang K, Fang J.

Int J Mol Sci. 2018 Dec 12;19(12). pii: E4019. doi: 10.3390/ijms19124019.

3.

Global transcriptome analysis of grapevine (Vitis vinifera L.) leaves under salt stress reveals differential response at early and late stages of stress in table grape cv. Thompson Seedless.

Upadhyay A, Gaonkar T, Upadhyay AK, Jogaiah S, Shinde MP, Kadoo NY, Gupta VS.

Plant Physiol Biochem. 2018 Aug;129:168-179. doi: 10.1016/j.plaphy.2018.05.032. Epub 2018 May 31.

PMID:
29885601
4.

Isolation and expression analysis of salt induced genes from contrasting grapevine (Vitis vinifera L.) cultivars.

Daldoul S, Guillaumie S, Reustle GM, Krczal G, Ghorbel A, Delrot S, Mliki A, Höfer MU.

Plant Sci. 2010 Nov;179(5):489-98. doi: 10.1016/j.plantsci.2010.07.017. Epub 2010 Aug 3.

PMID:
21802607
5.

Loss of the R2R3 MYB, AtMyb73, causes hyper-induction of the SOS1 and SOS3 genes in response to high salinity in Arabidopsis.

Kim JH, Nguyen NH, Jeong CY, Nguyen NT, Hong SW, Lee H.

J Plant Physiol. 2013 Nov 1;170(16):1461-5. doi: 10.1016/j.jplph.2013.05.011. Epub 2013 Jun 25.

PMID:
23809151
6.

Overexpression of a SBP-Box Gene (VpSBP16) from Chinese Wild Vitis Species in Arabidopsis Improves Salinity and Drought Stress Tolerance.

Hou H, Jia H, Yan Q, Wang X.

Int J Mol Sci. 2018 Mar 22;19(4). pii: E940. doi: 10.3390/ijms19040940.

7.

Subfunctionalization of cation/proton antiporter 1 genes in grapevine in response to salt stress in different organs.

Ma Y, Wang J, Zhong Y, Geng F, Cramer GR, Cheng ZM.

Hortic Res. 2015 Jul 15;2:15031. doi: 10.1038/hortres.2015.31. eCollection 2015.

8.

Genome wide transcriptional profile analysis of Vitis amurensis and Vitis vinifera in response to cold stress.

Xin H, Zhu W, Wang L, Xiang Y, Fang L, Li J, Sun X, Wang N, Londo JP, Li S.

PLoS One. 2013;8(3):e58740. doi: 10.1371/journal.pone.0058740. Epub 2013 Mar 13.

9.

The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE.

Molina C, Zaman-Allah M, Khan F, Fatnassi N, Horres R, Rotter B, Steinhauer D, Amenc L, Drevon JJ, Winter P, Kahl G.

BMC Plant Biol. 2011 Feb 14;11:31. doi: 10.1186/1471-2229-11-31.

10.

Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera.

Wang L, Zhu W, Fang L, Sun X, Su L, Liang Z, Wang N, Londo JP, Li S, Xin H.

BMC Plant Biol. 2014 Apr 22;14:103. doi: 10.1186/1471-2229-14-103.

11.

Drought Stress Enhances Up-Regulation of Anthocyanin Biosynthesis in Grapevine leafroll-associated virus 3-Infected in vitro Grapevine (Vitis vinifera) Leaves.

Cui ZH, Bi WL, Hao XY, Li PM, Duan Y, Walker MA, Xu Y, Wang QC.

Plant Dis. 2017 Sep;101(9):1606-1615. doi: 10.1094/PDIS-01-17-0104-RE. Epub 2017 Jul 10.

PMID:
30677332
12.

Differential expression of salt overly sensitive pathway genes determines salinity stress tolerance in Brassica genotypes.

Chakraborty K, Sairam RK, Bhattacharya RC.

Plant Physiol Biochem. 2012 Feb;51:90-101. doi: 10.1016/j.plaphy.2011.10.001. Epub 2011 Oct 14.

PMID:
22153244
13.

VitisCyc: a metabolic pathway knowledgebase for grapevine (Vitis vinifera).

Naithani S, Raja R, Waddell EN, Elser J, Gouthu S, Deluc LG, Jaiswal P.

Front Plant Sci. 2014 Dec 9;5:644. doi: 10.3389/fpls.2014.00644. eCollection 2014.

14.

Identification, characterization, and expression analysis of calmodulin and calmodulin-like genes in grapevine (Vitis vinifera) reveal likely roles in stress responses.

Vandelle E, Vannozzi A, Wong D, Danzi D, Digby AM, Dal Santo S, Astegno A.

Plant Physiol Biochem. 2018 Aug;129:221-237. doi: 10.1016/j.plaphy.2018.06.003. Epub 2018 Jun 4.

PMID:
29908490
15.

Modulation of flavonoid biosynthetic pathway genes and anthocyanins due to virus infection in grapevine (Vitis vinifera L.) leaves.

Gutha LR, Casassa LF, Harbertson JF, Naidu RA.

BMC Plant Biol. 2010 Aug 23;10:187. doi: 10.1186/1471-2229-10-187.

16.

Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera).

Liu J, Chen N, Chen F, Cai B, Dal Santo S, Tornielli GB, Pezzotti M, Cheng ZM.

BMC Genomics. 2014 Apr 13;15:281. doi: 10.1186/1471-2164-15-281.

17.

Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera.

Wang N, Zheng Y, Xin H, Fang L, Li S.

Plant Cell Rep. 2013 Jan;32(1):61-75. doi: 10.1007/s00299-012-1340-y. Epub 2012 Sep 15.

PMID:
22983198
18.

Proteomic analysis of Tunisian grapevine cultivar Razegui under salt stress.

Jellouli N, Ben Jouira H, Skouri H, Ghorbel A, Gourgouri A, Mliki A.

J Plant Physiol. 2008;165(5):471-81. Epub 2007 Oct 17.

PMID:
17942184
19.

'Bois noir' phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine.

Hren M, Nikolić P, Rotter A, Blejec A, Terrier N, Ravnikar M, Dermastia M, Gruden K.

BMC Genomics. 2009 Oct 2;10:460. doi: 10.1186/1471-2164-10-460.

20.

The alternative oxidase family of Vitis vinifera reveals an attractive model to study the importance of genomic design.

Costa JH, de Melo DF, Gouveia Z, Cardoso HG, Peixe A, Arnholdt-Schmitt B.

Physiol Plant. 2009 Dec;137(4):553-65. doi: 10.1111/j.1399-3054.2009.01267.x. Epub 2009 Jul 6.

PMID:
19682279

Supplemental Content

Support Center