Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Conformational Dynamics, Intramolecular Domain Conformation Signaling, and Activation of Apo-FimD Revealed by Single-Molecule Fluorescence Resonance Energy Transfer Studies.

Liu Y, Sun C, Han L, Yu Y, Zhou H, Shao Q, Lou J, Zhao Y, Huang Y.

Biochemistry. 2019 Apr 9;58(14):1931-1941. doi: 10.1021/acs.biochem.9b00080. Epub 2019 Mar 27.

PMID:
30888187
2.

Crystal structure of the FimD usher bound to its cognate FimC-FimH substrate.

Phan G, Remaut H, Wang T, Allen WJ, Pirker KF, Lebedev A, Henderson NS, Geibel S, Volkan E, Yan J, Kunze MB, Pinkner JS, Ford B, Kay CW, Li H, Hultgren SJ, Thanassi DG, Waksman G.

Nature. 2011 Jun 2;474(7349):49-53. doi: 10.1038/nature10109.

3.

Handover mechanism of the growing pilus by the bacterial outer-membrane usher FimD.

Du M, Yuan Z, Yu H, Henderson N, Sarowar S, Zhao G, Werneburg GT, Thanassi DG, Li H.

Nature. 2018 Oct;562(7727):444-447. doi: 10.1038/s41586-018-0587-z. Epub 2018 Oct 3.

4.

Recognition of the N-terminal lectin domain of FimH adhesin by the usher FimD is required for type 1 pilus biogenesis.

Munera D, Hultgren S, Fernández LA.

Mol Microbiol. 2007 Apr;64(2):333-46. Epub 2007 Mar 23.

5.

Crystal structure of the ternary FimC-FimF(t)-FimD(N) complex indicates conserved pilus chaperone-subunit complex recognition by the usher FimD.

Eidam O, Dworkowski FS, Glockshuber R, Grütter MG, Capitani G.

FEBS Lett. 2008 Mar 5;582(5):651-5. doi: 10.1016/j.febslet.2008.01.030. Epub 2008 Jan 31.

6.

Identification and characterization of the chaperone-subunit complex-binding domain from the type 1 pilus assembly platform FimD.

Nishiyama M, Vetsch M, Puorger C, Jelesarov I, Glockshuber R.

J Mol Biol. 2003 Jul 11;330(3):513-25.

PMID:
12842468
7.

Specific residues in the N-terminal domain of FimH stimulate type 1 fimbriae assembly in Escherichia coli following the initial binding of the adhesin to FimD usher.

Munera D, Palomino C, Fernández LA.

Mol Microbiol. 2008 Aug;69(4):911-25. doi: 10.1111/j.1365-2958.2008.06325.x. Epub 2008 Jul 23.

8.

The usher N terminus is the initial targeting site for chaperone-subunit complexes and participates in subsequent pilus biogenesis events.

Ng TW, Akman L, Osisami M, Thanassi DG.

J Bacteriol. 2004 Aug;186(16):5321-31. Erratum in: J Bacteriol. 2006 Mar;188(6):2295.

9.

Structural and energetic basis of folded-protein transport by the FimD usher.

Geibel S, Procko E, Hultgren SJ, Baker D, Waksman G.

Nature. 2013 Apr 11;496(7444):243-6. doi: 10.1038/nature12007.

10.

Function of the usher N-terminus in catalysing pilus assembly.

Henderson NS, Ng TW, Talukder I, Thanassi DG.

Mol Microbiol. 2011 Feb;79(4):954-67. doi: 10.1111/j.1365-2958.2010.07505.x. Epub 2010 Dec 22.

11.

Structural basis of chaperone-subunit complex recognition by the type 1 pilus assembly platform FimD.

Nishiyama M, Horst R, Eidam O, Herrmann T, Ignatov O, Vetsch M, Bettendorff P, Jelesarov I, Grütter MG, Wüthrich K, Glockshuber R, Capitani G.

EMBO J. 2005 Jun 15;24(12):2075-86. Epub 2005 May 26.

12.

Structural basis for usher activation and intramolecular subunit transfer in P pilus biogenesis in Escherichia coli.

Omattage NS, Deng Z, Pinkner JS, Dodson KW, Almqvist F, Yuan P, Hultgren SJ.

Nat Microbiol. 2018 Dec;3(12):1362-1368. doi: 10.1038/s41564-018-0255-y. Epub 2018 Oct 1.

13.

The outer membrane usher guarantees the formation of functional pili by selectively catalyzing donor-strand exchange between subunits that are adjacent in the mature pilus.

Nishiyama M, Glockshuber R.

J Mol Biol. 2010 Feb 12;396(1):1-8. doi: 10.1016/j.jmb.2009.12.005. Epub 2010 Jan 13.

PMID:
20004668
14.

Molecular basis of usher pore gating in Escherichia coli pilus biogenesis.

Volkan E, Kalas V, Pinkner JS, Dodson KW, Henderson NS, Pham T, Waksman G, Delcour AH, Thanassi DG, Hultgren SJ.

Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20741-6. doi: 10.1073/pnas.1320528110. Epub 2013 Dec 2.

15.

The pilus usher controls protein interactions via domain masking and is functional as an oligomer.

Werneburg GT, Henderson NS, Portnoy EB, Sarowar S, Hultgren SJ, Li H, Thanassi DG.

Nat Struct Mol Biol. 2015 Jul;22(7):540-6. doi: 10.1038/nsmb.3044. Epub 2015 Jun 8.

16.

Domain activities of PapC usher reveal the mechanism of action of an Escherichia coli molecular machine.

Volkan E, Ford BA, Pinkner JS, Dodson KW, Henderson NS, Thanassi DG, Waksman G, Hultgren SJ.

Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9563-8. doi: 10.1073/pnas.1207085109. Epub 2012 May 29.

17.

The role of chaperone-subunit usher domain interactions in the mechanism of bacterial pilus biogenesis revealed by ESI-MS.

Morrissey B, Leney AC, Toste Rêgo A, Phan G, Allen WJ, Verger D, Waksman G, Ashcroft AE, Radford SE.

Mol Cell Proteomics. 2012 Jul;11(7):M111.015289. doi: 10.1074/mcp.M111.015289. Epub 2012 Feb 27.

18.

The Escherichia coli P and Type 1 Pilus Assembly Chaperones PapD and FimC Are Monomeric in Solution.

Sarowar S, Hu OJ, Werneburg GT, Thanassi DG, Li H.

J Bacteriol. 2016 Aug 11;198(17):2360-9. doi: 10.1128/JB.00366-16. Print 2016 Sep 1.

19.

Reconstitution of pilus assembly reveals a bacterial outer membrane catalyst.

Nishiyama M, Ishikawa T, Rechsteiner H, Glockshuber R.

Science. 2008 Apr 18;320(5874):376-9. doi: 10.1126/science.1154994. Epub 2008 Mar 27.

20.

Purification of the outer membrane usher protein and periplasmic chaperone-subunit complexes from the P and type 1 pilus systems.

Henderson NS, Thanassi DG.

Methods Mol Biol. 2013;966:37-52. doi: 10.1007/978-1-62703-245-2_3.

PMID:
23299727

Supplemental Content

Support Center