Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 93

1.

Adaptation and phenotypic diversification through loss-of-function mutations in Arabidopsis protein-coding genes.

Xu YC, Niu XM, Li XX, He W, Chen JF, Zou YP, Wu Q, Zhang YE, Busch W, Guo YL.

Plant Cell. 2019 Mar 18. pii: tpc.00791.2018. doi: 10.1105/tpc.18.00791. [Epub ahead of print]

2.

Deep sequencing of Danish Holstein dairy cattle for variant detection and insight into potential loss-of-function variants in protein coding genes.

Das A, Panitz F, Gregersen VR, Bendixen C, Holm LE.

BMC Genomics. 2015 Dec 9;16:1043. doi: 10.1186/s12864-015-2249-y.

3.

Neurogenomics and the role of a large mutational target on rapid behavioral change.

Stanley CE Jr, Kulathinal RJ.

Biol Direct. 2016 Nov 8;11(1):60.

4.

A systematic survey of loss-of-function variants in human protein-coding genes.

MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J, Walter K, Jostins L, Habegger L, Pickrell JK, Montgomery SB, Albers CA, Zhang ZD, Conrad DF, Lunter G, Zheng H, Ayub Q, DePristo MA, Banks E, Hu M, Handsaker RE, Rosenfeld JA, Fromer M, Jin M, Mu XJ, Khurana E, Ye K, Kay M, Saunders GI, Suner MM, Hunt T, Barnes IH, Amid C, Carvalho-Silva DR, Bignell AH, Snow C, Yngvadottir B, Bumpstead S, Cooper DN, Xue Y, Romero IG; 1000 Genomes Project Consortium, Wang J, Li Y, Gibbs RA, McCarroll SA, Dermitzakis ET, Pritchard JK, Barrett JC, Harrow J, Hurles ME, Gerstein MB, Tyler-Smith C.

Science. 2012 Feb 17;335(6070):823-8. doi: 10.1126/science.1215040. Erratum in: Science. 2012 Apr 20;336(6079):296.

5.

Adaptation of Arabidopsis thaliana to the Yangtze River basin.

Zou YP, Hou XH, Wu Q, Chen JF, Li ZW, Han TS, Niu XM, Yang L, Xu YC, Zhang J, Zhang FM, Tan D, Tian Z, Gu H, Guo YL.

Genome Biol. 2017 Dec 28;18(1):239. doi: 10.1186/s13059-017-1378-9.

6.

Genetic Load of Loss-of-Function Polymorphic Variants in Great Apes.

de Valles-Ibáñez G, Hernandez-Rodriguez J, Prado-Martinez J, Luisi P, Marquès-Bonet T, Casals F.

Genome Biol Evol. 2016 Mar 26;8(3):871-7. doi: 10.1093/gbe/evw040.

7.

Association Between Loss-of-Function Mutations Within the FANCM Gene and Early-Onset Familial Breast Cancer.

Neidhardt G, Hauke J, Ramser J, Groß E, Gehrig A, Müller CR, Kahlert AK, Hackmann K, Honisch E, Niederacher D, Heilmann-Heimbach S, Franke A, Lieb W, Thiele H, Altmüller J, Nürnberg P, Klaschik K, Ernst C, Ditsch N, Jessen F, Ramirez A, Wappenschmidt B, Engel C, Rhiem K, Meindl A, Schmutzler RK, Hahnen E.

JAMA Oncol. 2017 Sep 1;3(9):1245-1248. doi: 10.1001/jamaoncol.2016.5592.

8.

Loss-of-function variants in schizophrenia risk and SETD1A as a candidate susceptibility gene.

Takata A, Xu B, Ionita-Laza I, Roos JL, Gogos JA, Karayiorgou M.

Neuron. 2014 May 21;82(4):773-80. doi: 10.1016/j.neuron.2014.04.043.

9.

Long-term balancing selection contributes to adaptation in Arabidopsis and its relatives.

Wu Q, Han TS, Chen X, Chen JF, Zou YP, Li ZW, Xu YC, Guo YL.

Genome Biol. 2017 Nov 15;18(1):217. doi: 10.1186/s13059-017-1342-8.

10.

Frequency of Loss of Function Variants in LRRK2 in Parkinson Disease.

Blauwendraat C, Reed X, Kia DA, Gan-Or Z, Lesage S, Pihlstrøm L, Guerreiro R, Gibbs JR, Sabir M, Ahmed S, Ding J, Alcalay RN, Hassin-Baer S, Pittman AM, Brooks J, Edsall C, Hernandez DG, Chung SJ, Goldwurm S, Toft M, Schulte C, Bras J, Wood NW, Brice A, Morris HR, Scholz SW, Nalls MA, Singleton AB, Cookson MR; COURAGE-PD (Comprehensive Unbiased Risk Factor Assessment for Genetics and Environment in Parkinson’s Disease) Consortium, the French Parkinson’s Disease Consortium, and the International Parkinson’s Disease Genomics Consortium (IPDGC).

JAMA Neurol. 2018 Nov 1;75(11):1416-1422. doi: 10.1001/jamaneurol.2018.1885.

PMID:
30039155
11.

Loss-of-function variants in the genomes of healthy humans.

MacArthur DG, Tyler-Smith C.

Hum Mol Genet. 2010 Oct 15;19(R2):R125-30. doi: 10.1093/hmg/ddq365. Epub 2010 Aug 30. Review.

12.

Identification of genomic features in the classification of loss- and gain-of-function mutation.

Jung S, Lee S, Kim S, Nam H.

BMC Med Inform Decis Mak. 2015;15 Suppl 1:S6. doi: 10.1186/1472-6947-15-S1-S6. Epub 2015 May 20.

13.

Transposable Elements Contribute to the Adaptation of Arabidopsis thaliana.

Li ZW, Hou XH, Chen JF, Xu YC, Wu Q, González J, Guo YL.

Genome Biol Evol. 2018 Aug 1;10(8):2140-2150. doi: 10.1093/gbe/evy171.

14.

Penetrance of pathogenic mutations in haploinsufficient genes for intellectual disability and related disorders.

Ropers HH, Wienker T.

Eur J Med Genet. 2015 Dec;58(12):715-8. doi: 10.1016/j.ejmg.2015.10.007. Epub 2015 Oct 24.

PMID:
26506440
15.

Comparative evolution history of SINEs in Arabidopsis thaliana and Brassica oleracea: evidence for a high rate of SINE loss.

Lenoir A, Pélissier T, Bousquet-Antonelli C, Deragon JM.

Cytogenet Genome Res. 2005;110(1-4):441-7.

PMID:
16093696
16.

Multiple loss-of-function variants of taste receptors in modern humans.

Fujikura K.

Sci Rep. 2015 Aug 26;5:12349. doi: 10.1038/srep12349. Erratum in: Sci Rep. 2016;6:20741.

17.

Assessing the functional consequence of loss of function variants using electronic medical record and large-scale genomics consortium efforts.

Sleiman P, Bradfield J, Mentch F, Almoguera B, Connolly J, Hakonarson H.

Front Genet. 2014 Apr 29;5:105. doi: 10.3389/fgene.2014.00105. eCollection 2014.

18.

Gene family evolution in green plants with emphasis on the origination and evolution of Arabidopsis thaliana genes.

Guo YL.

Plant J. 2013 Mar;73(6):941-51. doi: 10.1111/tpj.12089. Epub 2013 Jan 15.

20.

Supplemental Content

Support Center