Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Detecting volatile compounds in food by open-path Fourier-transform infrared spectroscopy.

Jiao L, Guo Y, Chen J, Zhao X, Dong D.

Food Res Int. 2019 May;119:968-973. doi: 10.1016/j.foodres.2018.11.042. Epub 2018 Nov 19.

PMID:
30884737
2.

Analysis and discrimination of grape spoilage via volatiles: a comparison between long optical path Fourier-transform-infrared spectroscopy and sensor arrays.

Dong D, Zheng W, Wang W, Zhao X, Jiao L, Zhao C.

Analyst. 2014 Oct 7;139(19):5028-34. doi: 10.1039/c4an00586d.

PMID:
25061632
3.

Analyzing strawberry spoilage via its volatile compounds using longpath Fourier transform infrared spectroscopy.

Dong D, Zhao C, Zheng W, Wang W, Zhao X, Jiao L.

Sci Rep. 2013;3:2585. doi: 10.1038/srep02585.

4.

[Investigation on the nitrogen functionality of volatile through FTIR spectroscopy equipped with a long path distance gas cell].

Guo XM, Hui SE, Hao JM.

Guang Pu Xue Yu Guang Pu Fen Xi. 2005 Sep;25(9):1393-6. Chinese.

PMID:
16379273
5.

Potential using of infrared thermal imaging to detect volatile compounds released from decayed grapes.

Ding L, Dong D, Jiao L, Zheng W.

PLoS One. 2017 Jun 30;12(6):e0180649. doi: 10.1371/journal.pone.0180649. eCollection 2017.

6.

A new volatiles-based differentiation method of Chinese spirits using longpath gas-phase infrared spectroscopy.

Dong D, Zheng W, Wang W, Zhao X, Jiao L, Zhao C.

Food Chem. 2014 Jul 15;155:45-9. doi: 10.1016/j.foodchem.2014.01.025. Epub 2014 Jan 23.

PMID:
24594152
7.

Chinese vinegar classification via volatiles using long-optical-path infrared spectroscopy and chemometrics.

Dong D, Zheng W, Jiao L, Lang Y, Zhao X.

Food Chem. 2016 Mar 1;194:95-100. doi: 10.1016/j.foodchem.2015.08.005. Epub 2015 Aug 4.

PMID:
26471531
8.

[Research on Grape Deterioration Process via Volatiles -Using Long Optical-Path Infrared Spectroscopy and Simplified E-Nose].

Zheng WG, Jiao LZ, Zhao XD, Dong DM.

Guang Pu Xue Yu Guang Pu Fen Xi. 2016 Jun;36(6):1645-9. Chinese.

PMID:
30052364
10.

Application of open-path Fourier transform infrared spectroscopy for atmospheric monitoring of a CO2 back-production experiment at the Ketzin pilot site (Germany).

Sauer U, Borsdorf H, Dietrich P, Liebscher A, Möller I, Martens S, Möller F, Schlömer S, Schütze C.

Environ Monit Assess. 2018 Feb 3;190(3):114. doi: 10.1007/s10661-018-6488-7.

PMID:
29396669
11.

A chemometrics approach applied to Fourier transform infrared spectroscopy (FTIR) for monitoring the spoilage of fresh salmon (Salmo salar) stored under modified atmospheres.

Saraiva C, Vasconcelos H, de Almeida JMMM.

Int J Food Microbiol. 2017 Jan 16;241:331-339. doi: 10.1016/j.ijfoodmicro.2016.10.038. Epub 2016 Nov 1.

PMID:
27838518
12.

[Application of Fourier transform infrared spectroscopy in identification of wine spoilage].

Zhao XD, Dong DM, Zheng WG, Jiao LZ, Lang Y.

Guang Pu Xue Yu Guang Pu Fen Xi. 2014 Oct;34(10):2667-72. Chinese.

PMID:
25739205
14.

Efficacy of using multiple open-path Fourier transform infrared (OP-FTIR) spectrometers in an odor emission episode investigation at a semiconductor manufacturing plant.

Tsao YC, Wu CF, Chang PE, Chen SY, Hwang YH.

Sci Total Environ. 2011 Aug 1;409(17):3158-65. doi: 10.1016/j.scitotenv.2011.04.052. Epub 2011 May 31.

PMID:
21621818
15.

Assessing the capability of Fourier transform infrared spectroscopy in tandem with chemometric analysis for predicting poultry meat spoilage.

Rahman UU, Sahar A, Pasha I, Rahman SU, Ishaq A.

PeerJ. 2018 Aug 6;6:e5376. doi: 10.7717/peerj.5376. eCollection 2018.

16.

Detection and quantification of water-based aerosols using active open-path FTIR.

Kira O, Linker R, Dubowski Y.

Sci Rep. 2016 Apr 28;6:25110. doi: 10.1038/srep25110.

17.

New PLS analysis approach to wine volatile compounds characterization by near infrared spectroscopy (NIR).

Genisheva Z, Quintelas C, Mesquita DP, Ferreira EC, Oliveira JM, Amaral AL.

Food Chem. 2018 Apr 25;246:172-178. doi: 10.1016/j.foodchem.2017.11.015. Epub 2017 Nov 6.

PMID:
29291836
18.

Classification and identification of Rhodobryum roseum Limpr. and its adulterants based on fourier-transform infrared spectroscopy (FTIR) and chemometrics.

Cao Z, Wang Z, Shang Z, Zhao J.

PLoS One. 2017 Feb 16;12(2):e0172359. doi: 10.1371/journal.pone.0172359. eCollection 2017.

19.

Volatile gas concentrations in turkey houses estimated by Fourier Transform Infrared Spectroscopy (FTIR).

Witkowska D.

Br Poult Sci. 2013 Jun;54(3):289-97. doi: 10.1080/00071668.2013.781264. Epub 2013 May 3.

PMID:
23638615
20.

Passive detection of biological aerosols in the atmosphere with a Fourier Transform Instrument (FTIR)--the results of the measurements in the laboratory and in the field.

Błęcka MI, Rataj M, Szymański G.

Orig Life Evol Biosph. 2012 Jun;42(2-3):101-11. doi: 10.1007/s11084-012-9288-z. Epub 2012 Jun 17.

Supplemental Content

Support Center