Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Enhancing Activity and Reducing Cost for Electrochemical Reduction of CO2 by Supporting Palladium on Metal Carbides.

Wang J, Kattel S, Hawxhurst CJ, Lee JH, Tackett BM, Chang K, Rui N, Liu CJ, Chen JG.

Angew Chem Int Ed Engl. 2019 Mar 18. doi: 10.1002/anie.201900781. [Epub ahead of print]

PMID:
30884064
2.

Low-Coordinated Edge Sites on Ultrathin Palladium Nanosheets Boost Carbon Dioxide Electroreduction Performance.

Zhu W, Zhang L, Yang P, Hu C, Luo Z, Chang X, Zhao ZJ, Gong J.

Angew Chem Int Ed Engl. 2018 Sep 3;57(36):11544-11548. doi: 10.1002/anie.201806432. Epub 2018 Jul 5.

PMID:
29947046
3.

Zinc-Coordinated Nitrogen-Codoped Graphene as an Efficient Catalyst for Selective Electrochemical Reduction of CO2 to CO.

Chen Z, Mou K, Yao S, Liu L.

ChemSusChem. 2018 Sep 11;11(17):2944-2952. doi: 10.1002/cssc.201800925. Epub 2018 Jul 26.

PMID:
29956488
4.

Electrochemical Reduction of Carbon Dioxide to Methanol on Hierarchical Pd/SnO2 Nanosheets with Abundant Pd-O-Sn Interfaces.

Zhang W, Qin Q, Dai L, Qin R, Zhao X, Chen X, Ou D, Chen J, Chuong TT, Wu B, Zheng N.

Angew Chem Int Ed Engl. 2018 Jul 20;57(30):9475-9479. doi: 10.1002/anie.201804142. Epub 2018 Jun 28.

PMID:
29785780
5.

A new class of electrocatalysts for hydrogen production from water electrolysis: metal monolayers supported on low-cost transition metal carbides.

Esposito DV, Hunt ST, Kimmel YC, Chen JG.

J Am Chem Soc. 2012 Feb 15;134(6):3025-33. doi: 10.1021/ja208656v. Epub 2012 Feb 1.

PMID:
22280370
6.

Structure- and Electrolyte-Sensitivity in CO2 Electroreduction.

Arán-Ais RM, Gao D, Roldan Cuenya B.

Acc Chem Res. 2018 Nov 20;51(11):2906-2917. doi: 10.1021/acs.accounts.8b00360. Epub 2018 Oct 18.

PMID:
30335937
7.

Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential.

Wang J, Yu L, Hu L, Chen G, Xin H, Feng X.

Nat Commun. 2018 May 15;9(1):1795. doi: 10.1038/s41467-018-04213-9.

8.

Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide.

Dai L, Qin Q, Wang P, Zhao X, Hu C, Liu P, Qin R, Chen M, Ou D, Xu C, Mo S, Wu B, Fu G, Zhang P, Zheng N.

Sci Adv. 2017 Sep 6;3(9):e1701069. doi: 10.1126/sciadv.1701069. eCollection 2017 Sep.

9.

Enhancing CO2 Electroreduction with the Metal-Oxide Interface.

Gao D, Zhang Y, Zhou Z, Cai F, Zhao X, Huang W, Li Y, Zhu J, Liu P, Yang F, Wang G, Bao X.

J Am Chem Soc. 2017 Apr 26;139(16):5652-5655. doi: 10.1021/jacs.7b00102. Epub 2017 Apr 14.

PMID:
28391686
10.

Enhancing CO2 Electroreduction with Au/Pyridine/Carbon Nanotubes Hybrid Structures.

Ma Z, Lian C, Niu D, Shi L, Hu S, Zhang X, Liu H.

ChemSusChem. 2019 Feb 14. doi: 10.1002/cssc.201802940. [Epub ahead of print]

PMID:
30761769
11.

Enhanced Electroreduction of Carbon Dioxide to Methanol Using Zinc Dendrites Pulse-Deposited on Silver Foam.

Low QH, Loo NWX, Calle-Vallejo F, Yeo BS.

Angew Chem Int Ed Engl. 2019 Feb 18;58(8):2256-2260. doi: 10.1002/anie.201810991. Epub 2019 Jan 29.

PMID:
30565358
12.

Reactions of water and C1 molecules on carbide and metal-modified carbide surfaces.

Wan W, Tackett BM, Chen JG.

Chem Soc Rev. 2017 Apr 3;46(7):1807-1823. doi: 10.1039/c6cs00862c. Review.

PMID:
28229154
13.

Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2.

Ju W, Bagger A, Hao GP, Varela AS, Sinev I, Bon V, Roldan Cuenya B, Kaskel S, Rossmeisl J, Strasser P.

Nat Commun. 2017 Oct 16;8(1):944. doi: 10.1038/s41467-017-01035-z.

14.

CO2 electroreduction performance of a single transition metal atom supported on porphyrin-like graphene: a computational study.

Wang Z, Zhao J, Cai Q.

Phys Chem Chem Phys. 2017 Aug 30;19(34):23113-23121. doi: 10.1039/c7cp04299j.

PMID:
28820201
15.

2D Metal Oxyhalide-Derived Catalysts for Efficient CO2 Electroreduction.

García de Arquer FP, Bushuyev OS, De Luna P, Dinh CT, Seifitokaldani A, Saidaminov MI, Tan CS, Quan LN, Proppe A, Kibria MG, Kelley SO, Sinton D, Sargent EH.

Adv Mater. 2018 Sep;30(38):e1802858. doi: 10.1002/adma.201802858. Epub 2018 Aug 8.

PMID:
30091157
16.

Crucial Role of Surface Hydroxyls on the Activity and Stability in Electrochemical CO2 Reduction.

Deng W, Zhang L, Li L, Chen S, Hu C, Zhao ZJ, Wang T, Gong J.

J Am Chem Soc. 2019 Feb 20;141(7):2911-2915. doi: 10.1021/jacs.8b13786. Epub 2019 Feb 7.

PMID:
30715865
17.

Partially Oxidized Palladium Nanodots for Enhanced Electrocatalytic Carbon Dioxide Reduction.

Lu H, Zhang L, Zhong JH, Yang HG.

Chem Asian J. 2018 Oct 4;13(19):2800-2804. doi: 10.1002/asia.201800946. Epub 2018 Aug 19.

PMID:
30055076
18.

Composition Tailoring via N and S Co-doping and Structure Tuning by Constructing Hierarchical Pores: Metal-Free Catalysts for High-Performance Electrochemical Reduction of CO2.

Yang H, Wu Y, Lin Q, Fan L, Chai X, Zhang Q, Liu J, He C, Lin Z.

Angew Chem Int Ed Engl. 2018 Nov 19;57(47):15476-15480. doi: 10.1002/anie.201809255. Epub 2018 Oct 25.

PMID:
30284359
19.

Enhanced Stability and CO/Formate Selectivity of Plasma-Treated SnO x/AgO x Catalysts during CO2 Electroreduction.

Choi YW, Scholten F, Sinev I, Roldan Cuenya B.

J Am Chem Soc. 2019 Apr 3;141(13):5261-5266. doi: 10.1021/jacs.8b12766. Epub 2019 Mar 15.

20.

Morphological and Compositional Design of Pd-Cu Bimetallic Nanocatalysts with Controllable Product Selectivity toward CO2 Electroreduction.

Zhu W, Zhang L, Yang P, Chang X, Dong H, Li A, Hu C, Huang Z, Zhao ZJ, Gong J.

Small. 2018 Feb;14(7). doi: 10.1002/smll.201703314. Epub 2017 Dec 27.

PMID:
29280288

Supplemental Content

Support Center