Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Continuously Enhanced Structural Disorder To Suppress the Lattice Thermal Conductivity of ZrNiSn-Based Half-Heusler Alloys by Multielement and Multisite Alloying with Very Low Hf Content.

Gong B, Li Y, Liu F, Zhu J, Wang X, Ao W, Zhang C, Li J, Xie H, Zhu T.

ACS Appl Mater Interfaces. 2019 Apr 10;11(14):13397-13404. doi: 10.1021/acsami.9b00648. Epub 2019 Mar 26.

PMID:
30883083
2.

Interpreting the Combustion Process for High-Performance ZrNiSn Thermoelectric Materials.

Hu T, Yang D, Su X, Yan Y, You Y, Liu W, Uher C, Tang X.

ACS Appl Mater Interfaces. 2018 Jan 10;10(1):864-872. doi: 10.1021/acsami.7b15273. Epub 2017 Dec 26.

PMID:
29236464
3.

The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials.

Xie H, Wang H, Fu C, Liu Y, Snyder GJ, Zhao X, Zhu T.

Sci Rep. 2014 Nov 3;4:6888. doi: 10.1038/srep06888.

4.

Ultrahigh Power Factor in Thermoelectric System Nb0.95M0.05FeSb (M = Hf, Zr, and Ti).

Ren W, Zhu H, Zhu Q, Saparamadu U, He R, Liu Z, Mao J, Wang C, Nielsch K, Wang Z, Ren Z.

Adv Sci (Weinh). 2018 May 2;5(7):1800278. doi: 10.1002/advs.201800278. eCollection 2018 Jul.

5.

Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials.

Fu C, Bai S, Liu Y, Tang Y, Chen L, Zhao X, Zhu T.

Nat Commun. 2015 Sep 2;6:8144. doi: 10.1038/ncomms9144.

6.

Improved Thermoelectric Performance of Tellurium by Alloying with a Small Concentration of Selenium to Decrease Lattice Thermal Conductivity.

Saparamadu U, Li C, He R, Zhu H, Ren Z, Mao J, Song S, Sun J, Chen S, Zhang Q, Nielsch K, Broido D, Ren Z.

ACS Appl Mater Interfaces. 2019 Jan 9;11(1):511-516. doi: 10.1021/acsami.8b13121. Epub 2018 Dec 20.

PMID:
30525424
7.

Effect of Spark Plasma Sintering on the Structure and Properties of Ti1-xZrxNiSn Half-Heusler Alloys.

Downie RA, Popuri SR, Ning H, Reece MJ, Bos JG.

Materials (Basel). 2014 Oct 20;7(10):7093-7104. doi: 10.3390/ma7107093.

8.

The role of grain boundary scattering in reducing the thermal conductivity of polycrystalline XNiSn (X = Hf, Zr, Ti) half-Heusler alloys.

Schrade M, Berland K, Eliassen SNH, Guzik MN, Echevarria-Bonet C, Sørby MH, Jenuš P, Hauback BC, Tofan R, Gunnæs AE, Persson C, Løvvik OM, Finstad TG.

Sci Rep. 2017 Oct 23;7(1):13760. doi: 10.1038/s41598-017-14013-8.

9.

Band Structures and Transport Properties of High-Performance Half-Heusler Thermoelectric Materials by First Principles.

Fang T, Zhao X, Zhu T.

Materials (Basel). 2018 May 19;11(5). pii: E847. doi: 10.3390/ma11050847. Review.

10.

Direct Observation of Inherent Atomic-Scale Defect Disorders responsible for High-Performance Ti1-x Hfx NiSn1-y Sby Half-Heusler Thermoelectric Alloys.

Kim KS, Kim YM, Mun H, Kim J, Park J, Borisevich AY, Lee KH, Kim SW.

Adv Mater. 2017 Sep;29(36). doi: 10.1002/adma.201702091. Epub 2017 Jul 24.

PMID:
28737233
11.

Computational prediction of high thermoelectric performance in p-type half-Heusler compounds with low band effective mass.

Fang T, Zheng S, Zhou T, Yan L, Zhang P.

Phys Chem Chem Phys. 2017 Feb 8;19(6):4411-4417. doi: 10.1039/c6cp07897d.

PMID:
28120969
12.

Enhanced thermoelectric performance in the p-type half-Heusler (Ti/Zr/Hf)CoSb0.8Sn0.2 system via phase separation.

Rausch E, Balke B, Ouardi S, Felser C.

Phys Chem Chem Phys. 2014 Dec 14;16(46):25258-62. doi: 10.1039/c4cp02561j. Epub 2014 Aug 27.

PMID:
25162747
13.

Panoscopically optimized thermoelectric performance of a half-Heusler/full-Heusler based in situ bulk composite Zr(0.7)Hf(0.3)Ni(1+x)Sn: an energy and time efficient way.

Bhardwaj A, Chauhan NS, Sancheti B, Pandey GN, Senguttuvan TD, Misra DK.

Phys Chem Chem Phys. 2015 Nov 28;17(44):30090-101. doi: 10.1039/c5cp05213k. Epub 2015 Oct 26.

PMID:
26499748
14.

Lanthanide Contraction as a Design Factor for High-Performance Half-Heusler Thermoelectric Materials.

Liu Y, Fu C, Xia K, Yu J, Zhao X, Pan H, Felser C, Zhu T.

Adv Mater. 2018 Aug;30(32):e1800881. doi: 10.1002/adma.201800881. Epub 2018 Jun 25.

PMID:
29939427
15.

Synergistic Strategy to Enhance the Thermoelectric Properties of CoSbS1-xSex Compounds via Solid Solution.

Yao W, Yang D, Yan Y, Peng K, Zhan H, Liu A, Lu X, Wang G, Zhou X.

ACS Appl Mater Interfaces. 2017 Mar 29;9(12):10595-10601. doi: 10.1021/acsami.6b12796. Epub 2017 Mar 17.

PMID:
28282116
16.

Effect of C and N Addition on Thermoelectric Properties of TiNiSn Half-Heusler Compounds.

Dow HS, Kim WS, Shin WH.

Materials (Basel). 2018 Feb 8;11(2). pii: E262. doi: 10.3390/ma11020262.

17.

Enhanced Thermoelectric Properties of Codoped Cr2Se3: The Distinct Roles of Transition Metals and S.

Zhang T, Su X, Yan Y, Liu W, Hu T, Zhang C, Zhang Z, Tang X.

ACS Appl Mater Interfaces. 2018 Jul 5;10(26):22389-22400. doi: 10.1021/acsami.8b05080. Epub 2018 Jun 25.

PMID:
29905069
18.

On the Phase Separation in n-Type Thermoelectric Half-Heusler Materials.

Schwall M, Balke B.

Materials (Basel). 2018 Apr 23;11(4). pii: E649. doi: 10.3390/ma11040649.

19.

Nanostructures versus solid solutions: low lattice thermal conductivity and enhanced thermoelectric figure of merit in Pb9.6Sb0.2Te10-xSex bulk materials.

Poudeu PF, D'Angelo J, Kong H, Downey A, Short JL, Pcionek R, Hogan TP, Uher C, Kanatzidis MG.

J Am Chem Soc. 2006 Nov 8;128(44):14347-55.

PMID:
17076508
20.

High Thermoelectric Performance of In4Se3-Based Materials and the Influencing Factors.

Yin X, Liu JY, Chen L, Wu LM.

Acc Chem Res. 2018 Feb 20;51(2):240-247. doi: 10.1021/acs.accounts.7b00480. Epub 2018 Jan 9.

PMID:
29313668

Supplemental Content

Support Center