Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Host defense peptide mimicking poly-β-peptides with fast, potent and broad spectrum antibacterial activities.

Zhang Q, Ma P, Xie J, Zhang S, Xiao X, Qiao Z, Shao N, Zhou M, Zhang W, Dai C, Qian Y, Qi F, Liu R.

Biomater Sci. 2019 Mar 18. doi: 10.1039/c9bm00248k. [Epub ahead of print]

PMID:
30882803
2.
3.

Synthesis and antibacterial evaluation of novel cationic chalcone derivatives possessing broad spectrum antibacterial activity.

Chu WC, Bai PY, Yang ZQ, Cui DY, Hua YG, Yang Y, Yang QQ, Zhang E, Qin S.

Eur J Med Chem. 2018 Jan 1;143:905-921. doi: 10.1016/j.ejmech.2017.12.009. Epub 2017 Dec 5.

PMID:
29227931
4.

Antibacterial Properties and Efficacy of a Novel SPLUNC1-Derived Antimicrobial Peptide, α4-Short, in a Murine Model of Respiratory Infection.

Jiang S, Deslouches B, Chen C, Di ME, Di YP.

MBio. 2019 Apr 9;10(2). pii: e00226-19. doi: 10.1128/mBio.00226-19.

5.

Antimicrobial polymers as synthetic mimics of host-defense peptides.

Kuroda K, Caputo GA.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013 Jan-Feb;5(1):49-66. doi: 10.1002/wnan.1199. Epub 2012 Oct 17. Review.

6.

Antimicrobial activity and membrane-active mechanism of tryptophan zipper-like β-hairpin antimicrobial peptides.

Xu L, Chou S, Wang J, Shao C, Li W, Zhu X, Shan A.

Amino Acids. 2015 Nov;47(11):2385-97. doi: 10.1007/s00726-015-2029-7. Epub 2015 Jun 19.

PMID:
26088720
7.

Tailoring an antibacterial peptide of human lysosomal cathepsin G to enhance its broad-spectrum action against antibiotic-resistant bacterial pathogens.

Shafer WM, Katzif S, Bowers S, Fallon M, Hubalek M, Reed MS, Veprek P, Pohl J.

Curr Pharm Des. 2002;8(9):695-702. Review.

PMID:
11945165
8.

Antimicrobial Synthetic Polymers: An Update on Structure-Activity Relationships.

Ergene C, Palermo EF.

Curr Pharm Des. 2018;24(8):855-865. doi: 10.2174/1381612824666180213140732.

PMID:
29436992
9.

[The history of the development and changes of quinolone antibacterial agents].

Takahashi H, Hayakawa I, Akimoto T.

Yakushigaku Zasshi. 2003;38(2):161-79. Japanese.

PMID:
15143768
10.

Helical 1:1 α/Sulfono-γ-AA Heterogeneous Peptides with Antibacterial Activity.

She F, Nimmagadda A, Teng P, Su M, Zuo X, Cai J.

Biomacromolecules. 2016 May 9;17(5):1854-9. doi: 10.1021/acs.biomac.6b00286. Epub 2016 Apr 13.

11.

Amino-terminated generation 2 poly(amidoamine) dendrimer as a potential broad-spectrum, nonresistance-inducing antibacterial agent.

Xue X, Chen X, Mao X, Hou Z, Zhou Y, Bai H, Meng J, Da F, Sang G, Wang Y, Luo X.

AAPS J. 2013 Jan;15(1):132-42. doi: 10.1208/s12248-012-9416-8. Epub 2012 Nov 8.

12.

Peptide-Like Nylon-3 Polymers with Activity against Phylogenetically Diverse, Intrinsically Drug-Resistant Pathogenic Fungi.

Rank LA, Walsh NM, Lim FY, Gellman SH, Keller NP, Hull CM.

mSphere. 2018 May 23;3(3). pii: e00223-18. doi: 10.1128/mSphere.00223-18. eCollection 2018 May-Jun.

13.

Peptide consensus sequence determination for the enhancement of the antimicrobial activity and selectivity of antimicrobial peptides.

Almaaytah A, Ajingi Y, Abualhaijaa A, Tarazi S, Alshar'i N, Al-Balas Q.

Infect Drug Resist. 2016 Dec 29;10:1-17. doi: 10.2147/IDR.S118877. eCollection 2017.

14.

Comparison of in vitro antibacterial activities of two cationic peptides CM15 and CM11 against five pathogenic bacteria: Pseudomonas aeruginosa, Staphylococcus aureus, Vibrio cholerae, Acinetobacter baumannii, and Escherichia coli.

Moghaddam MM, Abolhassani F, Babavalian H, Mirnejad R, Azizi Barjini K, Amani J.

Probiotics Antimicrob Proteins. 2012 Jun;4(2):133-9. doi: 10.1007/s12602-012-9098-7.

PMID:
26781855
15.

In vitro activity of novel in silico-developed antimicrobial peptides against a panel of bacterial pathogens.

Romani AA, Baroni MC, Taddei S, Ghidini F, Sansoni P, Cavirani S, Cabassi CS.

J Pept Sci. 2013 Sep;19(9):554-65. doi: 10.1002/psc.2532. Epub 2013 Jul 26.

PMID:
23893489
16.

In vitro activities of designed antimicrobial peptides against multidrug-resistant cystic fibrosis pathogens.

Schwab U, Gilligan P, Jaynes J, Henke D.

Antimicrob Agents Chemother. 1999 Jun;43(6):1435-40.

17.

Disruption of drug-resistant biofilms using de novo designed short α-helical antimicrobial peptides with idealized facial amphiphilicity.

Khara JS, Obuobi S, Wang Y, Hamilton MS, Robertson BD, Newton SM, Yang YY, Langford PR, Ee PLR.

Acta Biomater. 2017 Jul 15;57:103-114. doi: 10.1016/j.actbio.2017.04.032. Epub 2017 Apr 29.

18.

Beta-defensin derived cationic antimicrobial peptides with potent killing activity against gram negative and gram positive bacteria.

Yang M, Zhang C, Zhang MZ, Zhang S.

BMC Microbiol. 2018 Jun 5;18(1):54. doi: 10.1186/s12866-018-1190-z.

19.
20.

Adding a C-terminal Cysteine (CTC) Can Enhance the Bactericidal Activity of Three Different Antimicrobial Peptides.

Chen HL, Su PY, Kuo SC, Lauderdale TY, Shih C.

Front Microbiol. 2018 Jun 28;9:1440. doi: 10.3389/fmicb.2018.01440. eCollection 2018.

Supplemental Content

Support Center