Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Coupling ssDNA recombineering with CRISPR-Cas9 for Escherichia coli DnaG mutations.

Li J, Sun J, Gao X, Wu Z, Shang G.

Appl Microbiol Biotechnol. 2019 Apr;103(8):3559-3570. doi: 10.1007/s00253-019-09744-9. Epub 2019 Mar 16.

PMID:
30879090
2.

Combination of ssDNA recombineering and CRISPR-Cas9 for Pseudomonas putida KT2440 genome editing.

Wu Z, Chen Z, Gao X, Li J, Shang G.

Appl Microbiol Biotechnol. 2019 Mar;103(6):2783-2795. doi: 10.1007/s00253-019-09654-w. Epub 2019 Feb 14.

PMID:
30762073
3.

Efficient and Scalable Precision Genome Editing in Staphylococcus aureus through Conditional Recombineering and CRISPR/Cas9-Mediated Counterselection.

Penewit K, Holmes EA, McLean K, Ren M, Waalkes A, Salipante SJ.

MBio. 2018 Feb 20;9(1). pii: e00067-18. doi: 10.1128/mBio.00067-18. Erratum in: MBio. 2018 Oct 2;9(5):. MBio. 2019 Jan 15;10(1):.

4.

CRISPR-Cas12a-Assisted Recombineering in Bacteria.

Yan MY, Yan HQ, Ren GX, Zhao JP, Guo XP, Sun YC.

Appl Environ Microbiol. 2017 Aug 17;83(17). pii: e00947-17. doi: 10.1128/AEM.00947-17. Print 2017 Sep 1.

5.

Hot News: Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.

Soriano V.

AIDS Rev. 2017 Oct-Dec;19(3):167-172.

PMID:
29019352
6.

CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri.

Oh JH, van Pijkeren JP.

Nucleic Acids Res. 2014;42(17):e131. doi: 10.1093/nar/gku623. Epub 2014 Jul 29.

7.

Scarless Cas9 Assisted Recombineering (no-SCAR) in Escherichia coli, an Easy-to-Use System for Genome Editing.

Reisch CR, Prather KLJ.

Curr Protoc Mol Biol. 2017 Jan 5;117:31.8.1-31.8.20. doi: 10.1002/cpmb.29.

PMID:
28060411
8.

Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.

Liu J, Wang Y, Lu Y, Zheng P, Sun J, Ma Y.

Microb Cell Fact. 2017 Nov 16;16(1):205. doi: 10.1186/s12934-017-0815-5.

9.

Coupling the CRISPR/Cas9 System with Lambda Red Recombineering Enables Simplified Chromosomal Gene Replacement in Escherichia coli.

Pyne ME, Moo-Young M, Chung DA, Chou CP.

Appl Environ Microbiol. 2015 Aug;81(15):5103-14. doi: 10.1128/AEM.01248-15. Epub 2015 May 22.

10.

A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum.

Wang B, Hu Q, Zhang Y, Shi R, Chai X, Liu Z, Shang X, Zhang Y, Wen T.

Microb Cell Fact. 2018 Apr 23;17(1):63. doi: 10.1186/s12934-018-0910-2.

11.

The no-SCAR (Scarless Cas9 Assisted Recombineering) system for genome editing in Escherichia coli.

Reisch CR, Prather KL.

Sci Rep. 2015 Oct 14;5:15096. doi: 10.1038/srep15096.

12.

Large scale validation of an efficient CRISPR/Cas-based multi gene editing protocol in Escherichia coli.

Zerbini F, Zanella I, Fraccascia D, König E, Irene C, Frattini LF, Tomasi M, Fantappiè L, Ganfini L, Caproni E, Parri M, Grandi A, Grandi G.

Microb Cell Fact. 2017 Apr 24;16(1):68. doi: 10.1186/s12934-017-0681-1.

13.

Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9.

Chung ME, Yeh IH, Sung LY, Wu MY, Chao YP, Ng IS, Hu YC.

Biotechnol Bioeng. 2017 Jan;114(1):172-183. doi: 10.1002/bit.26056. Epub 2016 Aug 5.

PMID:
27454445
14.

Bacterial Genome Editing with CRISPR-Cas9: Deletion, Integration, Single Nucleotide Modification, and Desirable "Clean" Mutant Selection in Clostridium beijerinckii as an Example.

Wang Y, Zhang ZT, Seo SO, Lynn P, Lu T, Jin YS, Blaschek HP.

ACS Synth Biol. 2016 Jul 15;5(7):721-32. doi: 10.1021/acssynbio.6b00060. Epub 2016 Apr 26.

PMID:
27115041
15.

Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.

Altenbuchner J.

Appl Environ Microbiol. 2016 Aug 15;82(17):5421-7. doi: 10.1128/AEM.01453-16. Print 2016 Sep 1.

16.

CRISPR/Cas9-assisted gRNA-free one-step genome editing with no sequence limitations and improved targeting efficiency.

Zhao D, Feng X, Zhu X, Wu T, Zhang X, Bi C.

Sci Rep. 2017 Nov 30;7(1):16624. doi: 10.1038/s41598-017-16998-8.

17.

Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus Aspergillus oryzae.

Katayama T, Nakamura H, Zhang Y, Pascal A, Fujii W, Maruyama JI.

Appl Environ Microbiol. 2019 Jan 23;85(3). pii: e01896-18. doi: 10.1128/AEM.01896-18. Print 2019 Feb 1.

PMID:
30478227
18.

Managing the SOS Response for Enhanced CRISPR-Cas-Based Recombineering in E. coli through Transient Inhibition of Host RecA Activity.

Moreb EA, Hoover B, Yaseen A, Valyasevi N, Roecker Z, Menacho-Melgar R, Lynch MD.

ACS Synth Biol. 2017 Dec 15;6(12):2209-2218. doi: 10.1021/acssynbio.7b00174. Epub 2017 Oct 2.

PMID:
28915012
19.

CRMAGE: CRISPR Optimized MAGE Recombineering.

Ronda C, Pedersen LE, Sommer MO, Nielsen AT.

Sci Rep. 2016 Jan 22;6:19452. doi: 10.1038/srep19452.

20.

Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9.

Zhao D, Yuan S, Xiong B, Sun H, Ye L, Li J, Zhang X, Bi C.

Microb Cell Fact. 2016 Dec 1;15(1):205.

Supplemental Content

Support Center