Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Distribution and speciation of copper in rice (Oryza sativa L.) from mining-impacted paddy soil: Implications for copper uptake mechanisms.

Cui JL, Zhao YP, Lu YJ, Chan TS, Zhang LL, Tsang DCW, Li XD.

Environ Int. 2019 May;126:717-726. doi: 10.1016/j.envint.2019.02.045. Epub 2019 Mar 14.

2.

Spatial imaging and speciation of Cu in rice (Oryza sativa L.) roots using synchrotron-based X-ray microfluorescence and X-ray absorption spectroscopy.

Lu L, Xie R, Liu T, Wang H, Hou D, Du Y, He Z, Yang X, Sun H, Tian S.

Chemosphere. 2017 May;175:356-364. doi: 10.1016/j.chemosphere.2017.02.082. Epub 2017 Feb 16.

PMID:
28235745
3.

Does sulfur fertilizer influence Cu migration and transformation in colloids of soil pore water from the rice (Oryza sativa L.) rhizosphere?

Sun L, Xue Y, Peng C, Xu C, Shi J.

Environ Pollut. 2018 Dec;243(Pt B):1119-1125. doi: 10.1016/j.envpol.2018.09.078. Epub 2018 Sep 19.

PMID:
30253303
4.

Open-pit coal-mining effects on rice paddy soil composition and metal bioavailability to Oryza sativa L. plants in Cam Pha, northeastern Vietnam.

Martinez RE, Marquez JE, Hòa HT, Gieré R.

Environ Sci Pollut Res Int. 2013 Nov;20(11):7686-98. doi: 10.1007/s11356-013-2030-1. Epub 2013 Aug 30.

PMID:
23990254
5.

Accumulation, translocation, and assessment of heavy metals in the soil-rice systems near a mine-impacted region.

Du F, Yang Z, Liu P, Wang L.

Environ Sci Pollut Res Int. 2018 Nov;25(32):32221-32230. doi: 10.1007/s11356-018-3184-7. Epub 2018 Sep 17.

PMID:
30225688
6.

Mechanism study of sulfur fertilization mediating copper translocation and biotransformation in rice (Oryza sativa L.) plants.

Sun L, Yang J, Fang H, Xu C, Peng C, Huang H, Lu L, Duan D, Zhang X, Shi J.

Environ Pollut. 2017 Jul;226:426-434. doi: 10.1016/j.envpol.2017.03.080. Epub 2017 Apr 29.

PMID:
28461082
7.

Speciation and distribution of copper in a mining soil using multiple synchrotron-based bulk and microscopic techniques.

Yang J, Liu J, Dynes JJ, Peak D, Regier T, Wang J, Zhu S, Shi J, Tse JS.

Environ Sci Pollut Res Int. 2014 Feb;21(4):2943-54. doi: 10.1007/s11356-013-2214-8. Epub 2013 Oct 30.

PMID:
24170498
8.

Localization and speciation of arsenic and trace elements in rice tissues.

Smith E, Kempson I, Juhasz AL, Weber J, Skinner WM, Gräfe M.

Chemosphere. 2009 Jul;76(4):529-35. doi: 10.1016/j.chemosphere.2009.03.010. Epub 2009 Apr 3.

PMID:
19345396
9.

Temporal variability in trace metal solubility in a paddy soil not reflected in uptake by rice (Oryza sativa L.).

Pan Y, Koopmans GF, Bonten LT, Song J, Luo Y, Temminghoff EJ, Comans RN.

Environ Geochem Health. 2016 Dec;38(6):1355-1372. Epub 2016 Jan 30.

10.

Co-Amendment of S and Si Alleviates Cu Toxicity in Rice (Oryza Sativa L.) Grown on Cu-Contaminated Paddy Soil.

Lu Z, Yan X, Wei Z, Wu J.

Int J Environ Res Public Health. 2018 Dec 26;16(1). pii: E57. doi: 10.3390/ijerph16010057.

11.

[Long-term effects of tillage methods on heavy metal accumulation and availability in purple paddy soil].

Chang TJ, Cui XQ, Ruan Z, Zhao XL.

Huan Jing Ke Xue. 2014 Jun;35(6):2381-91. Chinese.

PMID:
25158521
12.

Field experiment for determining lead accumulation in rice grains of different genotypes and correlation with iron oxides deposited on rhizosphere soil.

Lai YC, Syu CH, Wang PJ, Lee DY, Fan C, Juang KW.

Sci Total Environ. 2018 Jan 1;610-611:845-853. doi: 10.1016/j.scitotenv.2017.08.034. Epub 2017 Aug 18.

PMID:
28826122
13.

Ten-year regional monitoring of soil-rice grain contamination by heavy metals with implications for target remediation and food safety.

He M, Shen H, Li Z, Wang L, Wang F, Zhao K, Liu X, Wendroth O, Xu J.

Environ Pollut. 2019 Jan;244:431-439. doi: 10.1016/j.envpol.2018.10.070. Epub 2018 Oct 16.

PMID:
30359925
14.

[Speciation and bioavailability of heavy metals in paddy soil irrigated by acid mine drainage].

Xu C, Xia BC, Wu HN, Lin XF, Qiu RL.

Huan Jing Ke Xue. 2009 Mar 15;30(3):900-6. Chinese.

PMID:
19432348
15.

Role of chelant on Cu distribution and speciation in Lolium multiflorum by synchrotron techniques.

Zhao YP, Cui JL, Chan TS, Dong JC, Chen DL, Li XD.

Sci Total Environ. 2018 Apr 15;621:772-781. doi: 10.1016/j.scitotenv.2017.11.189. Epub 2017 Dec 1.

PMID:
29202288
16.

Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: differences in mechanisms controlling soil sequestration and uptake in rice.

Okkenhaug G, Zhu YG, He J, Li X, Luo L, Mulder J.

Environ Sci Technol. 2012 Mar 20;46(6):3155-62. doi: 10.1021/es2022472. Epub 2012 Mar 2.

PMID:
22309044
18.

Iron Plaque: A Barrier Layer to the Uptake and Translocation of Copper Oxide Nanoparticles by Rice Plants.

Peng C, Chen S, Shen C, He M, Zhang Y, Ye J, Liu J, Shi J.

Environ Sci Technol. 2018 Nov 6;52(21):12244-12254. doi: 10.1021/acs.est.8b02687. Epub 2018 Oct 24.

PMID:
30351042
19.

Rapid evaluation of arsenic contamination in paddy soils using field portable X-ray fluorescence spectrometry.

Liang JH, Liu PP, Chen Z, Sun GX, Li H.

J Environ Sci (China). 2018 Feb;64:345-351. doi: 10.1016/j.jes.2017.11.020. Epub 2017 Nov 24.

PMID:
29478657
20.

[Accumulation of S, Fe and Cd in rhizosphere of rice and their uptake in rice with different water managements].

Zhang XX, Zhang XX, Zheng YJ, Wang RP, Chen NC, Lu PX.

Huan Jing Ke Xue. 2013 Jul;34(7):2837-46. Chinese.

PMID:
24028021

Supplemental Content

Support Center