Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Pea polyphenolics and hydrolysis processing alter microbial community structure and early pathogen colonization in mice.

Forgie AJ, Gao Y, Ju T, Pepin DM, Yang K, Gänzle MG, Ozga JA, Chan CB, Willing BP.

J Nutr Biochem. 2019 Feb 8;67:101-110. doi: 10.1016/j.jnutbio.2019.01.012. [Epub ahead of print]

PMID:
30877891
2.

Characterization of proanthocyanidin metabolism in pea (Pisum sativum) seeds.

Ferraro K, Jin AL, Nguyen TD, Reinecke DM, Ozga JA, Ro DK.

BMC Plant Biol. 2014 Sep 16;14:238. doi: 10.1186/s12870-014-0238-y.

3.

Hydrolysis enhances bioavailability of proanthocyanidin-derived metabolites and improves β-cell function in glucose intolerant rats.

Yang K, Hashemi Z, Han W, Jin A, Yang H, Ozga J, Li L, Chan CB.

J Nutr Biochem. 2015 Aug;26(8):850-9. doi: 10.1016/j.jnutbio.2015.03.002. Epub 2015 Apr 15.

PMID:
25987165
5.

Pea-protein alginate encapsulation adversely affects development of clinical signs of Citrobacter rodentium-induced colitis in mice treated with probiotics.

Varankovich N, Grigoryan A, Brown K, Inglis GD, Uwiera RRE, Nickerson MT, Korber DR.

Can J Microbiol. 2018 Oct;64(10):744-760. doi: 10.1139/cjm-2018-0166. Epub 2018 Jun 29.

PMID:
29958098
6.

Dietary grape seed proanthocyanidins (GSPs) improve weaned intestinal microbiota and mucosal barrier using a piglet model.

Han M, Song P, Huang C, Rezaei A, Farrar S, Brown MA, Ma X.

Oncotarget. 2016 Dec 6;7(49):80313-80326. doi: 10.18632/oncotarget.13450.

8.

Yellow pea fiber improves glycemia and reduces Clostridium leptum in diet-induced obese rats.

Eslinger AJ, Eller LK, Reimer RA.

Nutr Res. 2014 Aug;34(8):714-22. doi: 10.1016/j.nutres.2014.07.016. Epub 2014 Aug 1.

PMID:
25156790
9.

Role of Intestinal Microbiota in the Bioavailability and Physiological Functions of Dietary Polyphenols.

Kawabata K, Yoshioka Y, Terao J.

Molecules. 2019 Jan 21;24(2). pii: E370. doi: 10.3390/molecules24020370. Review.

10.

Ground flaxseed reverses protection of a reduced-fat diet against Citrobacter rodentium-induced colitis.

Määttänen P, Lurz E, Botts SR, Wu RY, Yeung CW, Li B, Abiff S, Johnson-Henry KC, Lepp D, Power KA, Pierro A, Surette ME, Sherman PM.

Am J Physiol Gastrointest Liver Physiol. 2018 Nov 1;315(5):G788-G798. doi: 10.1152/ajpgi.00101.2018. Epub 2018 Aug 10.

PMID:
30095298
11.

Assessment of the mechanisms exerting glucose-lowering effects of dried peas in glucose-intolerant rats.

Whitlock KA, Kozicky L, Jin A, Yee H, Ha C, Morris J, Field CJ, Bell RC, Ozga JA, Chan CB.

Br J Nutr. 2012 Aug;108 Suppl 1:S91-102. doi: 10.1017/S0007114512000736.

PMID:
22916820
12.

Proanthocyanidin-Rich Grape Seed Extract Modulates Intestinal Microbiota in Ovariectomized Mice.

Jin G, Asou Y, Ishiyama K, Okawa A, Kanno T, Niwano Y.

J Food Sci. 2018 Apr;83(4):1149-1152. doi: 10.1111/1750-3841.14098. Epub 2018 Mar 26.

PMID:
29578242
13.

Butyrate Supplementation at High Concentrations Alters Enteric Bacterial Communities and Reduces Intestinal Inflammation in Mice Infected with Citrobacter rodentium.

Jiminez JA, Uwiera TC, Abbott DW, Uwiera RRE, Inglis GD.

mSphere. 2017 Aug 23;2(4). pii: e00243-17. doi: 10.1128/mSphere.00243-17. eCollection 2017 Jul-Aug.

14.

Influence of omega-3 PUFAs on the metabolism of proanthocyanidins in rats.

Molinar-Toribio E, Ramos-Romero S, Fuguet E, Taltavull N, Méndez L, Romeu M, Medina I, Torres JL, Pérez-Jiménez J.

Food Res Int. 2017 Jul;97:133-140. doi: 10.1016/j.foodres.2017.03.046. Epub 2017 Mar 25.

PMID:
28578033
15.

Broad bean and pea by-products as sources of fibre-rich ingredients: potential antioxidant activity measured in vitro.

Mateos-Aparicio I, Redondo-Cuenca A, Villanueva-Suárez MJ.

J Sci Food Agric. 2012 Feb;92(3):697-703. doi: 10.1002/jsfa.4633. Epub 2011 Sep 15.

PMID:
21919006
16.

A lyophilized red grape pomace containing proanthocyanidin-rich dietary fiber induces genetic and metabolic alterations in colon mucosa of female C57BL/6J mice.

Lizarraga D, Vinardell MP, Noé V, van Delft JH, Alcarraz-Vizán G, van Breda SG, Staal Y, Günther UL, Carrigan JB, Reed MA, Ciudad CJ, Torres JL, Cascante M.

J Nutr. 2011 Sep;141(9):1597-604. doi: 10.3945/jn.110.133199. Epub 2011 Jul 20. Erratum in: J Nutr. 2012 Feb 1;142(2):396. Carrigan, John B [added].

PMID:
21775529
17.

Structural characterization of proanthocyanidins from adzuki seed coat.

Kawakami W, Oshima A, Yanase E.

Food Chem. 2018 Jan 15;239:1110-1116. doi: 10.1016/j.foodchem.2017.07.001. Epub 2017 Jul 6.

PMID:
28873529
18.

Proanthocyanidins in health and disease.

Bladé C, Aragonès G, Arola-Arnal A, Muguerza B, Bravo FI, Salvadó MJ, Arola L, Suárez M.

Biofactors. 2016 Jan-Feb;42(1):5-12. doi: 10.1002/biof.1249. Epub 2016 Jan 13. Review.

PMID:
26762288
19.

Cooking enhances beneficial effects of pea seed coat consumption on glucose tolerance, incretin, and pancreatic hormones in high-fat-diet-fed rats.

Hashemi Z, Yang K, Yang H, Jin A, Ozga J, Chan CB.

Appl Physiol Nutr Metab. 2015 Apr;40(4):323-33. doi: 10.1139/apnm-2014-0380. Epub 2014 Nov 21.

PMID:
25794240
20.

Modulation of gut microbiota by polyphenols from adlay (Coix lacryma-jobi L. var. ma-yuen Stapf.) in rats fed a high-cholesterol diet.

Wang Q, Du Z, Zhang H, Zhao L, Sun J, Zheng X, Ren F.

Int J Food Sci Nutr. 2015;66(7):783-9. doi: 10.3109/09637486.2015.1088941. Epub 2015 Sep 25.

PMID:
26406384

Supplemental Content

Support Center