Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

The Use of Pluripotent Stem Cell-Derived Organoids to Study Extracellular Matrix Development during Neural Degeneration.

Yan Y, Bejoy J, Marzano M, Li Y.

Cells. 2019 Mar 14;8(3). pii: E242. doi: 10.3390/cells8030242. Review.

2.

Modeling Neurodegenerative Microenvironment Using Cortical Organoids Derived from Human Stem Cells.

Yan Y, Song L, Bejoy J, Zhao J, Kanekiyo T, Bu G, Zhou Y, Li Y.

Tissue Eng Part A. 2018 Jul;24(13-14):1125-1137. doi: 10.1089/ten.TEA.2017.0423. Epub 2018 Feb 27.

PMID:
29361890
3.

Neuroprotective Activities of Heparin, Heparinase III, and Hyaluronic Acid on the Aβ42-Treated Forebrain Spheroids Derived from Human Stem Cells.

Bejoy J, Song L, Wang Z, Sang QX, Zhou Y, Li Y.

ACS Biomater Sci Eng. 2018 Aug 13;4(8):2922-2933. doi: 10.1021/acsbiomaterials.8b00021. Epub 2018 Jun 28.

4.

Extracellular matrix component expression in human pluripotent stem cell-derived retinal organoids recapitulates retinogenesis in vivo and reveals an important role for IMPG1 and CD44 in the development of photoreceptors and interphotoreceptor matrix.

Felemban M, Dorgau B, Hunt NC, Hallam D, Zerti D, Bauer R, Ding Y, Collin J, Steel D, Krasnogor N, Al-Aama J, Lindsay S, Mellough C, Lako M.

Acta Biomater. 2018 Jul 1;74:207-221. doi: 10.1016/j.actbio.2018.05.023. Epub 2018 May 17.

5.

3D brain Organoids derived from pluripotent stem cells: promising experimental models for brain development and neurodegenerative disorders.

Lee CT, Bendriem RM, Wu WW, Shen RF.

J Biomed Sci. 2017 Aug 20;24(1):59. doi: 10.1186/s12929-017-0362-8. Review.

6.

Combinatorial extracellular matrix microenvironments promote survival and phenotype of human induced pluripotent stem cell-derived endothelial cells in hypoxia.

Hou L, Coller J, Natu V, Hastie TJ, Huang NF.

Acta Biomater. 2016 Oct 15;44:188-99. doi: 10.1016/j.actbio.2016.08.003. Epub 2016 Aug 4.

7.

Self-Organizing 3D Human Neural Tissue Derived from Induced Pluripotent Stem Cells Recapitulate Alzheimer's Disease Phenotypes.

Raja WK, Mungenast AE, Lin YT, Ko T, Abdurrob F, Seo J, Tsai LH.

PLoS One. 2016 Sep 13;11(9):e0161969. doi: 10.1371/journal.pone.0161969. eCollection 2016.

8.

Crosslinking of extracellular matrix scaffolds derived from pluripotent stem cell aggregates modulates neural differentiation.

Sart S, Yan Y, Li Y, Lochner E, Zeng C, Ma T, Li Y.

Acta Biomater. 2016 Jan;30:222-232. doi: 10.1016/j.actbio.2015.11.016. Epub 2015 Nov 11.

PMID:
26577988
9.

Neural differentiation from pluripotent stem cells: The role of natural and synthetic extracellular matrix.

Li Y, Liu M, Yan Y, Yang ST.

World J Stem Cells. 2014 Jan 26;6(1):11-23. doi: 10.4252/wjsc.v6.i1.11. Review.

10.

Differential effects of acellular embryonic matrices on pluripotent stem cell expansion and neural differentiation.

Yan Y, Martin LM, Bosco DB, Bundy JL, Nowakowski RS, Sang QX, Li Y.

Biomaterials. 2015 Dec;73:231-42. doi: 10.1016/j.biomaterials.2015.09.020. Epub 2015 Sep 12.

PMID:
26410789
11.

Decellularised extracellular matrix-derived peptides from neural retina and retinal pigment epithelium enhance the expression of synaptic markers and light responsiveness of human pluripotent stem cell derived retinal organoids.

Dorgau B, Felemban M, Hilgen G, Kiening M, Zerti D, Hunt NC, Doherty M, Whitfield P, Hallam D, White K, Ding Y, Krasnogor N, Al-Aama J, Asfour HZ, Sernagor E, Lako M.

Biomaterials. 2019 Apr;199:63-75. doi: 10.1016/j.biomaterials.2019.01.028. Epub 2019 Jan 22.

12.

Wnt-YAP interactions in the neural fate of human pluripotent stem cells and the implications for neural organoid formation.

Bejoy J, Song L, Li Y.

Organogenesis. 2016 Jan 2;12(1):1-15. doi: 10.1080/15476278.2016.1140290. Epub 2016 Feb 22.

13.

Studying Heterotypic Cell⁻Cell Interactions in the Human Brain Using Pluripotent Stem Cell Models for Neurodegeneration.

Song L, Yan Y, Marzano M, Li Y.

Cells. 2019 Apr 1;8(4). pii: E299. doi: 10.3390/cells8040299. Review.

14.

3D culture models of Alzheimer's disease: a road map to a "cure-in-a-dish".

Choi SH, Kim YH, Quinti L, Tanzi RE, Kim DY.

Mol Neurodegener. 2016 Dec 9;11(1):75. doi: 10.1186/s13024-016-0139-7. Review.

15.

In vitro organogenesis from pluripotent stem cells.

Li Y, Xu C, Ma T.

Organogenesis. 2014 Apr-Jun;10(2):159-63. doi: 10.4161/org.28918. Epub 2014 Apr 24. Review.

16.

Disease Modeling Using 3D Organoids Derived from Human Induced Pluripotent Stem Cells.

Ho BX, Pek NMQ, Soh BS.

Int J Mol Sci. 2018 Mar 21;19(4). pii: E936. doi: 10.3390/ijms19040936. Review.

17.

Pluripotent stem cell-derived kidney organoids: An in vivo-like in vitro technology.

Schutgens F, Verhaar MC, Rookmaaker MB.

Eur J Pharmacol. 2016 Nov 5;790:12-20. doi: 10.1016/j.ejphar.2016.06.059. Epub 2016 Jul 1. Review.

PMID:
27375081
18.

Modeling Herpes Simplex Virus 1 Infections in Human Central Nervous System Neuronal Cells Using Two- and Three-Dimensional Cultures Derived from Induced Pluripotent Stem Cells.

D'Aiuto L, Bloom DC, Naciri JN, Smith A, Edwards TG, McClain L, Callio JA, Jessup M, Wood J, Chowdari K, Demers M, Abrahamson EE, Ikonomovic MD, Viggiano L, De Zio R, Watkins S, Kinchington PR, Nimgaonkar VL.

J Virol. 2019 Apr 17;93(9). pii: e00111-19. doi: 10.1128/JVI.00111-19. Print 2019 May 1.

19.

Generating CNS organoids from human induced pluripotent stem cells for modeling neurological disorders.

Brawner AT, Xu R, Liu D, Jiang P.

Int J Physiol Pathophysiol Pharmacol. 2017 Jun 15;9(3):101-111. eCollection 2017. Review.

20.

Stem cell models of Alzheimer's disease: progress and challenges.

Arber C, Lovejoy C, Wray S.

Alzheimers Res Ther. 2017 Jun 13;9(1):42. doi: 10.1186/s13195-017-0268-4. Review.

Supplemental Content

Support Center