Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Transcranial Low-intensity Pulsed Ultrasound Modulates Structural and Functional Synaptic Plasticity in Rat Hippocampus.

Huang X, Lin Z, Wang K, Liu X, Zhou W, Meng L, Huang J, Yuan K, Niu L, Zheng H.

IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Mar 8. doi: 10.1109/TUFFC.2019.2903896. [Epub ahead of print]

PMID:
30869615
2.

Non-invasive Low-Intensity Pulsed Ultrasound Modulates Primary Cilia of Rat Hippocampal Neurons.

Huang X, Lin Z, Meng L, Wang K, Liu X, Zhou W, Zheng H, Niu L.

Ultrasound Med Biol. 2019 May;45(5):1274-1283. doi: 10.1016/j.ultrasmedbio.2018.12.012. Epub 2019 Feb 20.

PMID:
30795858
3.

Perinatal undernutrition attenuates field excitatory postsynaptic potentials and influences dendritic spine density and morphology in hippocampus of male rat offspring.

Zhang Y, Wei J, Yang Z.

Neuroscience. 2013 Aug 6;244:31-41. doi: 10.1016/j.neuroscience.2013.03.061. Epub 2013 Apr 6.

PMID:
23570795
4.

Loss of GluN2B-containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density, and disrupts learning.

Brigman JL, Wright T, Talani G, Prasad-Mulcare S, Jinde S, Seabold GK, Mathur P, Davis MI, Bock R, Gustin RM, Colbran RJ, Alvarez VA, Nakazawa K, Delpire E, Lovinger DM, Holmes A.

J Neurosci. 2010 Mar 31;30(13):4590-600. doi: 10.1523/JNEUROSCI.0640-10.2010.

5.

Repetitive transcranial magnetic stimulation (rTMS) influences spatial cognition and modulates hippocampal structural synaptic plasticity in aging mice.

Ma J, Zhang Z, Kang L, Geng D, Wang Y, Wang M, Cui H.

Exp Gerontol. 2014 Oct;58:256-68. doi: 10.1016/j.exger.2014.08.011. Epub 2014 Aug 27.

PMID:
25172625
6.

Repetitive magnetic stimulation induces functional and structural plasticity of excitatory postsynapses in mouse organotypic hippocampal slice cultures.

Vlachos A, Müller-Dahlhaus F, Rosskopp J, Lenz M, Ziemann U, Deller T.

J Neurosci. 2012 Nov 28;32(48):17514-23. doi: 10.1523/JNEUROSCI.0409-12.2012.

7.

Learning, memory and synaptic plasticity in hippocampus in rats exposed to sevoflurane.

Xiao H, Liu B, Chen Y, Zhang J.

Int J Dev Neurosci. 2016 Feb;48:38-49. doi: 10.1016/j.ijdevneu.2015.11.001. Epub 2015 Dec 2.

PMID:
26612208
8.

Disruption of Coordinated Presynaptic and Postsynaptic Maturation Underlies the Defects in Hippocampal Synapse Stability and Plasticity in Abl2/Arg-Deficient Mice.

Xiao X, Levy AD, Rosenberg BJ, Higley MJ, Koleske AJ.

J Neurosci. 2016 Jun 22;36(25):6778-91. doi: 10.1523/JNEUROSCI.4092-15.2016.

9.

Radix Puerariae modulates glutamatergic synaptic architecture and potentiates functional synaptic plasticity in primary hippocampal neurons.

Bhuiyan MMH, Haque MN, Mohibbullah M, Kim YK, Moon IS.

J Ethnopharmacol. 2017 Sep 14;209:100-107. doi: 10.1016/j.jep.2017.07.030. Epub 2017 Jul 19.

PMID:
28734961
10.

Daily low-intensity pulsed ultrasound-mediated osteogenic differentiation in rat osteoblasts.

Suzuki A, Takayama T, Suzuki N, Sato M, Fukuda T, Ito K.

Acta Biochim Biophys Sin (Shanghai). 2009 Feb;41(2):108-15.

11.
12.

Effect of Low-Intensity Pulsed Ultrasound on the Expression of Calcium Ion Transport-Related Proteins during Tertiary Dentin Formation.

Zuo J, Zhen J, Wang F, Li Y, Zhou Z.

Ultrasound Med Biol. 2018 Jan;44(1):223-233. doi: 10.1016/j.ultrasmedbio.2017.09.006. Epub 2017 Oct 24.

PMID:
29079395
13.

Efficacy of extracorporeal shockwave therapy and low-intensity pulsed ultrasound in a rat knee osteoarthritis model: A randomized controlled trial.

Yılmaz V, Karadaş Ö, Dandinoğlu T, Umay E, Çakçı A, Tan AK.

Eur J Rheumatol. 2017 Jun;4(2):104-108. doi: 10.5152/eurjrheum.2017.160089. Epub 2017 Jun 1.

14.

Neuroprotective Effect of Low-Intensity Pulsed Ultrasound Against MPP+-Induced Neurotoxicity in PC12 Cells: Involvement of K2P Channels and Stretch-Activated Ion Channels.

Zhao L, Feng Y, Shi A, Zhang L, Guo S, Wan M.

Ultrasound Med Biol. 2017 Sep;43(9):1986-1999. doi: 10.1016/j.ultrasmedbio.2017.04.020. Epub 2017 Jun 3.

PMID:
28583325
15.

Low-intensity pulsed ultrasound stimulates osteogenic differentiation in ROS 17/2.8 cells.

Takayama T, Suzuki N, Ikeda K, Shimada T, Suzuki A, Maeno M, Otsuka K, Ito K.

Life Sci. 2007 Feb 13;80(10):965-71. Epub 2006 Nov 29.

PMID:
17174343
16.

[Effect of low intensity pulsed ultrasound on expression of TGF-β1 and Smads during dentin injury and repair].

Wang F, Zuo J, Li Y, Yang Z, Luo J.

Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2017 Sep 28;42(9):1030-1036. doi: 10.11817/j.issn.1672-7347.2017.09.006. Chinese.

17.

Wearable Ultrasound Improves Motor Function in an MPTP Mouse Model of Parkinson's Disease.

Zhou H, Niu L, Xia X, Lin Z, Liu X, Su M, Guo R, Meng L, Zheng H.

IEEE Trans Biomed Eng. 2019 Feb 15. doi: 10.1109/TBME.2019.2899631. [Epub ahead of print]

PMID:
30794160
18.

Low Intensity Pulsed Ultrasound Promotes the Extracellular Matrix Synthesis of Degenerative Human Nucleus Pulposus Cells Through FAK/PI3K/Akt Pathway.

Zhang X, Hu Z, Hao J, Shen J.

Spine (Phila Pa 1976). 2016 Mar;41(5):E248-54. doi: 10.1097/BRS.0000000000001220.

PMID:
26571160
19.

Low-intensity pulsed ultrasound (LIPUS) treatment of cultured chondrocytes stimulates production of CCN family protein 2 (CCN2), a protein involved in the regeneration of articular cartilage: mechanism underlying this stimulation.

Nishida T, Kubota S, Aoyama E, Yamanaka N, Lyons KM, Takigawa M.

Osteoarthritis Cartilage. 2017 May;25(5):759-769. doi: 10.1016/j.joca.2016.10.003. Epub 2016 Oct 8.

20.

Long-term in vivo imaging of dendritic spines in the hippocampus reveals structural plasticity.

Gu L, Kleiber S, Schmid L, Nebeling F, Chamoun M, Steffen J, Wagner J, Fuhrmann M.

J Neurosci. 2014 Oct 15;34(42):13948-53. doi: 10.1523/JNEUROSCI.1464-14.2014.

Supplemental Content

Support Center