Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Nanoscale measurement of giant saturation magnetization in α″-Fe16N2 by electron energy-loss magnetic chiral dichroism.

Chen X, Higashikozono S, Ito K, Jin L, Ho PL, Yu CP, Tai NH, Mayer J, Dunin-Borkowski RE, Suemasu T, Zhong X.

Ultramicroscopy. 2019 Aug;203:37-43. doi: 10.1016/j.ultramic.2019.02.016. Epub 2019 Feb 19.

PMID:
30862364
2.

Low-Energy Bead-Mill Dispersion of Agglomerated Core-Shell α-Fe/Al₂O₃ and α″-Fe₁₆N₂/Al₂O₃ Ferromagnetic Nanoparticles in Toluene.

Zulhijah R, Suhendi A, Yoshimi K, Kartikowati CW, Ogi T, Iwaki T, Okuyama K.

Langmuir. 2015 Jun 9;31(22):6011-9. doi: 10.1021/acs.langmuir.5b00901. Epub 2015 May 28.

PMID:
25984828
3.

The impact of carbon coating on the synthesis and properties of α''-Fe16N2 powders.

Bridges CA, Rios O, Allard LF, Meyer HM, Huq A, Jiang Y, Wang JP, Brady MP.

Phys Chem Chem Phys. 2016 May 14;18(18):13010-7. doi: 10.1039/c6cp00737f. Epub 2016 Apr 25.

PMID:
27109006
4.

Gas phase preparation of spherical core-shell α''-Fe16N2/SiO2 magnetic nanoparticles.

Zulhijah R, Dani Nandiyanto AB, Ogi T, Iwaki T, Nakamura K, Okuyama K.

Nanoscale. 2014 Jun 21;6(12):6487-91. doi: 10.1039/c3nr06867f.

PMID:
24834445
5.

Effect of magnetic field strength on the alignment of α''-Fe16N2 nanoparticle films.

Kartikowati CW, Suhendi A, Zulhijah R, Ogi T, Iwaki T, Okuyama K.

Nanoscale. 2016 Feb 7;8(5):2648-55. doi: 10.1039/c5nr07859h.

PMID:
26758175
6.

Quantitative understanding of thermal stability of α''-Fe16N2.

Yamamoto S, Gallage R, Ogata Y, Kusano Y, Kobayashi N, Ogawa T, Hayashi N, Kohara K, Takahashi M, Takano M.

Chem Commun (Camb). 2013 Sep 11;49(70):7708-10. doi: 10.1039/c3cc43590c.

PMID:
23877656
7.

Preparation and evaluation of magnetic nanocomposite fibers containing α″-Fe₁₆N₂ and α-Fe nanoparticles in polyvinylpyrrolidone via magneto-electrospinning.

Kartikowati CW, Suhendi A, Zulhijah R, Ogi T, Iwaki T, Okuyama K.

Nanotechnology. 2016 Jan 15;27(2):025601. doi: 10.1088/0957-4484/27/2/025601. Epub 2015 Nov 30.

PMID:
26618712
8.

Microstructural investigation of stress-assisted α″-α' phase transformation in cold-rolled Ti-7.5Mo alloy.

Chen YC, Ju CP, Chern Lin JH.

Micron. 2014 Oct;65:34-44. doi: 10.1016/j.micron.2014.04.005. Epub 2014 Apr 18.

PMID:
25041829
9.

Effects of dynamic diffraction conditions on magnetic parameter determination in a double perovskite Sr2FeMoO6 using electron energy-loss magnetic chiral dichroism.

Wang ZC, Zhong XY, Jin L, Chen XF, Moritomo Y, Mayer J.

Ultramicroscopy. 2017 May;176:212-217. doi: 10.1016/j.ultramic.2016.12.024. Epub 2016 Dec 30.

PMID:
28089306
10.

Synthesis of Fe16N2 compound Free-Standing Foils with 20 MGOe Magnetic Energy Product by Nitrogen Ion-Implantation.

Jiang Y, Mehedi MA, Fu E, Wang Y, Allard LF, Wang JP.

Sci Rep. 2016 May 5;6:25436. doi: 10.1038/srep25436.

11.

Stability of α''-Fe16N2 in hydrogenous atmospheres.

Yamamoto S, Gallage R, Isoda S, Ogata Y, Kusano Y, Kobayashi N, Ogawa T, Hayashi N, Takahashi M, Takano M.

Chem Commun (Camb). 2014 Jul 7;50(53):7040-3. doi: 10.1039/c4cc01839g. Epub 2014 May 22.

PMID:
24849002
12.

Effect of cation ratio and order on magnetic circular dichroism in the double perovskite Sr2Fe1+xRe1-xO6.

Ho PL, Yu CP, Zhang Q, Song K, Buban JP, Choi SY, Dunin-Borkowski RE, Mayer J, Tai NH, Zhu J, Jin L, Zhong X.

Ultramicroscopy. 2018 Oct;193:137-142. doi: 10.1016/j.ultramic.2018.06.009. Epub 2018 Jun 14.

PMID:
30005323
13.

An in-plane magnetic chiral dichroism approach for measurement of intrinsic magnetic signals using transmitted electrons.

Song D, Tavabi AH, Li ZA, Kovács A, Rusz J, Huang W, Richter G, Dunin-Borkowski RE, Zhu J.

Nat Commun. 2017 May 15;8:15348. doi: 10.1038/ncomms15348.

14.

Magnetic properties of single nanomagnets: Electron energy-loss magnetic chiral dichroism on FePt nanoparticles.

Schneider S, Pohl D, Löffler S, Rusz J, Kasinathan D, Schattschneider P, Schultz L, Rellinghaus B.

Ultramicroscopy. 2016 Dec;171:186-194. doi: 10.1016/j.ultramic.2016.09.009. Epub 2016 Sep 20.

PMID:
27694036
15.

Detection of magnetic circular dichroism using a transmission electron microscope.

Schattschneider P, Rubino S, Hébert C, Rusz J, Kunes J, Novák P, Carlino E, Fabrizioli M, Panaccione G, Rossi G.

Nature. 2006 May 25;441(7092):486-8.

PMID:
16724061
16.

Crystallographic Structure Analysis of a Ti-Ta Thin Film Materials Library Fabricated by Combinatorial Magnetron Sputtering.

Kadletz PM, Motemani Y, Iannotta J, Salomon S, Khare C, Grossmann L, Maier HJ, Ludwig A, Schmahl WW.

ACS Comb Sci. 2018 Mar 12;20(3):137-150. doi: 10.1021/acscombsci.7b00135. Epub 2018 Feb 15.

PMID:
29356502
17.

Reciprocal and real space maps for EMCD experiments.

Lidbaum H, Rusz J, Rubino S, Liebig A, Hjörvarsson B, Oppeneer PM, Eriksson O, Leifer K.

Ultramicroscopy. 2010 Oct;110(11):1380-9. doi: 10.1016/j.ultramic.2010.07.004. Epub 2010 Jul 13.

PMID:
20692100
18.

Signal enhancement of electron magnetic circular dichroism by ultra-high-voltage TEM, toward quantitative nano-magnetism measurements.

Tatsumi K, Muto S, Rusz J, Kudo T, Arai S.

Microscopy (Oxf). 2014 Jun;63(3):243-7. doi: 10.1093/jmicro/dfu002. Epub 2014 Feb 5.

PMID:
24503161
19.

Quantitative characterization of nanoscale polycrystalline magnets with electron magnetic circular dichroism.

Muto S, Rusz J, Tatsumi K, Adam R, Arai S, Kocevski V, Oppeneer PM, Bürgler DE, Schneider CM.

Nat Commun. 2014;5:3138. doi: 10.1038/ncomms4138.

PMID:
24451994
20.

Effect of the asymmetry of dynamical electron diffraction on intensity of acquired EMCD signals.

Song D, Wang Z, Zhu J.

Ultramicroscopy. 2015 Jan;148:42-51. doi: 10.1016/j.ultramic.2014.08.012. Epub 2014 Sep 7.

PMID:
25261842

Supplemental Content

Support Center