Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Shifting Oxygen Charge Towards Octahedral Metal: A Way to Promote Water Oxidation on Cobalt Spinel Oxides.

Sun S, Sun Y, Zhou Y, Xi S, Ren X, Huang B, Liao H, Wang LP, Du Y, Xu ZJ.

Angew Chem Int Ed Engl. 2019 Apr 23;58(18):6042-6047. doi: 10.1002/anie.201902114. Epub 2019 Mar 26.

PMID:
30860633
2.

Enlarged CoO Covalency in Octahedral Sites Leading to Highly Efficient Spinel Oxides for Oxygen Evolution Reaction.

Zhou Y, Sun S, Song J, Xi S, Chen B, Du Y, Fisher AC, Cheng F, Wang X, Zhang H, Xu ZJ.

Adv Mater. 2018 Aug;30(32):e1802912. doi: 10.1002/adma.201802912. Epub 2018 Jun 25.

PMID:
29939436
3.

Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transition-Metal Spinels.

Wei C, Feng Z, Scherer GG, Barber J, Shao-Horn Y, Xu ZJ.

Adv Mater. 2017 Jun;29(23). doi: 10.1002/adma.201606800. Epub 2017 Apr 10.

PMID:
28394440
4.

Direct Spectroscopy for Probing the Critical Role of Partial Covalency in Oxygen Reduction Reaction for Cobalt-Manganese Spinel Oxides.

Long X, Yu P, Zhang N, Li C, Feng X, Ren G, Zheng S, Fu J, Cheng F, Liu X.

Nanomaterials (Basel). 2019 Apr 9;9(4). pii: E577. doi: 10.3390/nano9040577.

5.

Mastering Surface Reconstruction of Metastable Spinel Oxides for Better Water Oxidation.

Duan Y, Sun S, Sun Y, Xi S, Chi X, Zhang Q, Ren X, Wang J, Ong SJH, Du Y, Gu L, Grimaud A, Xu ZJ.

Adv Mater. 2019 Mar;31(12):e1807898. doi: 10.1002/adma.201807898. Epub 2019 Jan 24.

PMID:
30680800
6.

Geometric Occupancy and Oxidation State Requirements of Cations in Cobalt Oxides for Oxygen Reduction Reaction.

Liu J, Bao H, Zhang B, Hua Q, Shang M, Wang J, Jiang L.

ACS Appl Mater Interfaces. 2019 Apr 3;11(13):12525-12534. doi: 10.1021/acsami.9b00481. Epub 2019 Mar 25.

PMID:
30868871
7.

In Operando Identification of Geometrical-Site-Dependent Water Oxidation Activity of Spinel Co3O4.

Wang HY, Hung SF, Chen HY, Chan TS, Chen HM, Liu B.

J Am Chem Soc. 2016 Jan 13;138(1):36-9. doi: 10.1021/jacs.5b10525. Epub 2015 Dec 31.

PMID:
26710084
8.

Coffee-Waste Templating of Metal Ion-Substituted Cobalt Oxides for the Oxygen Evolution Reaction.

Yu M, Chan CK, Tüysüz H.

ChemSusChem. 2018 Feb 9;11(3):605-611. doi: 10.1002/cssc.201701877. Epub 2018 Jan 15.

PMID:
29194977
9.

Electrochemical Synthesis of Spinel Type ZnCo2O4 Electrodes for Use as Oxygen Evolution Reaction Catalysts.

Kim TW, Woo MA, Regis M, Choi KS.

J Phys Chem Lett. 2014 Jul 3;5(13):2370-4. doi: 10.1021/jz501077u. Epub 2014 Jun 24.

PMID:
26279561
10.

Valence- and element-dependent water oxidation behaviors: in situ X-ray diffraction, absorption and electrochemical impedance spectroscopies.

Hsu CS, Suen NT, Hsu YY, Lin HY, Tung CW, Liao YF, Chan TS, Sheu HS, Chen SY, Chen HM.

Phys Chem Chem Phys. 2017 Mar 29;19(13):8681-8693. doi: 10.1039/c6cp07630k.

PMID:
28272620
11.

Role of cobalt cations in short range antiferromagnetic Co3O4 nanoparticles: a thermal treatment approach to affecting phonon and magnetic properties.

Gawali SR, Gandhi AC, Gaikwad SS, Pant J, Chan TS, Cheng CL, Ma YR, Wu SY.

Sci Rep. 2018 Jan 10;8(1):249. doi: 10.1038/s41598-017-18563-9.

12.

Defect Engineering, Electronic Structure, and Catalytic Properties of Perovskite Oxide La0.5 Sr0.5 CoO3-δ.

Wang X, Huang K, Ma W, Cong Y, Ge C, Feng S.

Chemistry. 2017 Jan 23;23(5):1093-1100. doi: 10.1002/chem.201604065. Epub 2016 Dec 16.

PMID:
27805294
13.

Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution.

Grimaud A, Diaz-Morales O, Han B, Hong WT, Lee YL, Giordano L, Stoerzinger KA, Koper MTM, Shao-Horn Y.

Nat Chem. 2017 Jan 9;9(5):457-465. doi: 10.1038/nchem.2695. Erratum in: Nat Chem. 2017 Jul 25;9(8):828. Nat Chem. 2018 Jan 23;10 (2):242.

PMID:
28430191
14.

Facet-dependent activity and stability of Co₃O₄ nanocrystals towards the oxygen evolution reaction.

Chen Z, Kronawitter CX, Koel BE.

Phys Chem Chem Phys. 2015 Nov 21;17(43):29387-93. doi: 10.1039/c5cp02876k.

PMID:
26473390
15.

Relative stability of normal vs. inverse spinel for 3d transition metal oxides as lithium intercalation cathodes.

Bhattacharya J, Wolverton C.

Phys Chem Chem Phys. 2013 May 7;15(17):6486-98. doi: 10.1039/c3cp50910a.

PMID:
23529669
16.

Superexchange Effects on Oxygen Reduction Activity of Edge-Sharing [Cox Mn1-x O6 ] Octahedra in Spinel Oxide.

Zhou Y, Sun S, Xi S, Duan Y, Sritharan T, Du Y, Xu ZJ.

Adv Mater. 2018 Mar;30(11). doi: 10.1002/adma.201705407. Epub 2018 Jan 22.

PMID:
29356120
17.

Aluminum-Tailored Energy Level and Morphology of Co3- x Alx O4 Porous Nanosheets toward Highly Efficient Electrocatalysts for Water Oxidation.

Wang X, Sun P, Lu H, Tang K, Li Q, Wang C, Mao Z, Ali T, Yan C.

Small. 2019 Mar;15(11):e1804886. doi: 10.1002/smll.201804886. Epub 2019 Feb 8.

PMID:
30735295
18.

Study of the Oxygen Evolution Reaction Catalytic Behavior of CoxNi1-xFe2O4 in Alkaline Medium.

Maruthapandian V, Mathankumar M, Saraswathy V, Subramanian B, Muralidharan S.

ACS Appl Mater Interfaces. 2017 Apr 19;9(15):13132-13141. doi: 10.1021/acsami.6b16685. Epub 2017 Apr 4.

PMID:
28339180
19.

Resolution of Electronic and Structural Factors Underlying Oxygen-Evolving Performance in Amorphous Cobalt Oxide Catalysts.

Kwon G, Jang H, Lee JS, Mane A, Mandia DJ, Soltau SR, Utschig LM, Martinson ABF, Tiede DM, Kim H, Kim J.

J Am Chem Soc. 2018 Aug 29;140(34):10710-10720. doi: 10.1021/jacs.8b02719. Epub 2018 Aug 1.

PMID:
30028604
20.

Engineering the Surface Metal Active Sites of Nickel Cobalt Oxide Nanoplates toward Enhanced Oxygen Electrocatalysis for Zn-Air Battery.

Zhao J, He Y, Chen Z, Zheng X, Han X, Rao D, Zhong C, Hu W, Deng Y.

ACS Appl Mater Interfaces. 2019 Feb 6;11(5):4915-4921. doi: 10.1021/acsami.8b16473. Epub 2019 Jan 25.

PMID:
30537808

Supplemental Content

Support Center