Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Molecular Cloning and Characterization of Three Glucosinolate Transporter (GTR) Genes from Chinese Kale.

Jiang D, Lei J, Cao B, Wu S, Chen G, Chen C.

Genes (Basel). 2019 Mar 8;10(3). pii: E202. doi: 10.3390/genes10030202.

2.

De novo Transcriptome Assembly of Chinese Kale and Global Expression Analysis of Genes Involved in Glucosinolate Metabolism in Multiple Tissues.

Wu S, Lei J, Chen G, Chen H, Cao B, Chen C.

Front Plant Sci. 2017 Feb 8;8:92. doi: 10.3389/fpls.2017.00092. eCollection 2017.

3.

Molecular Characterization of MYB28 Involved in Aliphatic Glucosinolate Biosynthesis in Chinese Kale (Brassica oleracea var. alboglabra Bailey).

Yin L, Chen H, Cao B, Lei J, Chen G.

Front Plant Sci. 2017 Jun 21;8:1083. doi: 10.3389/fpls.2017.01083. eCollection 2017.

4.
5.

Identification and expression analysis of glucosinolate biosynthetic genes and estimation of glucosinolate contents in edible organs of Brassica oleracea subspecies.

Yi GE, Robin AH, Yang K, Park JI, Kang JG, Yang TJ, Nou IS.

Molecules. 2015 Jul 20;20(7):13089-111. doi: 10.3390/molecules200713089.

6.

Factors affecting the glucosinolate content of kale (Brassica oleracea acephala group).

Velasco P, Cartea ME, Gonzalez C, Vilar M, Ordas A.

J Agric Food Chem. 2007 Feb 7;55(3):955-62.

PMID:
17263499
7.

Effects of glucose and gibberellic acid on glucosinolate content and antioxidant properties of Chinese kale sprouts.

Miao HY, Wang MY, Chang JQ, Tao H, Sun B, Wang QM.

J Zhejiang Univ Sci B. 2017 Dec.;18(12):1093-1100. doi: 10.1631/jzus.B1700308.

8.

Comparative transcriptome analyses revealed different heat stress responses in high- and low-GS Brassica alboglabra sprouts.

Guo R, Wang X, Han X, Li W, Liu T, Chen B, Chen X, Wang-Pruski G.

BMC Genomics. 2019 Apr 4;20(1):269. doi: 10.1186/s12864-019-5652-y.

9.

Diversity of Kale (Brassica oleracea var. sabellica): Glucosinolate Content and Phylogenetic Relationships.

Hahn C, Müller A, Kuhnert N, Albach D.

J Agric Food Chem. 2016 Apr 27;64(16):3215-25. doi: 10.1021/acs.jafc.6b01000. Epub 2016 Apr 15.

PMID:
27028789
10.

Rapid estimation of glucosinolate thermal degradation rate constants in leaves of Chinese kale and broccoli (Brassica oleracea) in two seasons.

Hennig K, Verkerk R, Bonnema G, Dekker M.

J Agric Food Chem. 2012 Aug 15;60(32):7859-65. doi: 10.1021/jf300710x. Epub 2012 Aug 2.

PMID:
22816876
11.

Induced production of 1-methoxy-indol-3-ylmethyl glucosinolate by jasmonic acid and methyl jasmonate in sprouts and leaves of pak choi (Brassica rapa ssp. chinensis).

Wiesner M, Hanschen FS, Schreiner M, Glatt H, Zrenner R.

Int J Mol Sci. 2013 Jul 18;14(7):14996-5016. doi: 10.3390/ijms140714996.

12.

Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways.

Mikkelsen MD, Petersen BL, Glawischnig E, Jensen AB, Andreasson E, Halkier BA.

Plant Physiol. 2003 Jan;131(1):298-308.

13.

Isolation and expression of glucosinolate synthesis genes CYP83A1 and CYP83B1 in Pak Choi (Brassica rapa L. ssp. chinensis var. communis (N. Tsen & S.H. Lee) Hanelt).

Zhu B, Wang Z, Yang J, Zhu Z, Wang H.

Int J Mol Sci. 2012;13(5):5832-43. doi: 10.3390/ijms13055832. Epub 2012 May 15.

14.

Novel bioresources for studies of Brassica oleracea: identification of a kale MYB transcription factor responsible for glucosinolate production.

Araki R, Hasumi A, Nishizawa OI, Sasaki K, Kuwahara A, Sawada Y, Totoki Y, Toyoda A, Sakaki Y, Li Y, Saito K, Ogawa T, Hirai MY.

Plant Biotechnol J. 2013 Oct;11(8):1017-27. doi: 10.1111/pbi.12095. Epub 2013 Jul 30.

15.

Variation of glucosinolates and quinone reductase activity among different varieties of Chinese kale and improvement of glucoraphanin by metabolic engineering.

Qian H, Sun B, Miao H, Cai C, Xu C, Wang Q.

Food Chem. 2015 Feb 1;168:321-6. doi: 10.1016/j.foodchem.2014.07.073. Epub 2014 Jul 23.

PMID:
25172716
16.

Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways.

Mewis I, Tokuhisa JG, Schultz JC, Appel HM, Ulrichs C, Gershenzon J.

Phytochemistry. 2006 Nov;67(22):2450-62. Epub 2006 Oct 17.

PMID:
17049571
17.

Targeted silencing of BjMYB28 transcription factor gene directs development of low glucosinolate lines in oilseed Brassica juncea.

Augustine R, Mukhopadhyay A, Bisht NC.

Plant Biotechnol J. 2013 Sep;11(7):855-66. doi: 10.1111/pbi.12078. Epub 2013 May 31.

18.

The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana.

Gigolashvili T, Yatusevich R, Berger B, Müller C, Flügge UI.

Plant J. 2007 Jul;51(2):247-61. Epub 2007 May 23.

19.

Impact of selenium supply on Se-methylselenocysteine and glucosinolate accumulation in selenium-biofortified Brassica sprouts.

Avila FW, Yang Y, Faquin V, Ramos SJ, Guilherme LR, Thannhauser TW, Li L.

Food Chem. 2014 Dec 15;165:578-86. doi: 10.1016/j.foodchem.2014.05.134. Epub 2014 Jun 4.

PMID:
25038715
20.

Biotic elicitors and mechanical damage modulate glucosinolate accumulation by co-ordinated interplay of glucosinolate biosynthesis regulators in polyploid Brassica juncea.

Augustine R, Bisht NC.

Phytochemistry. 2015 Sep;117:43-50. doi: 10.1016/j.phytochem.2015.05.015. Epub 2015 Jun 5.

PMID:
26057228

Supplemental Content

Support Center