Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

In Vivo Pharmacokinetics Assessment of Indocyanine Green-Loaded Nanoparticles in Tumor Tissue with a Dynamic Diffuse Fluorescence Tomography System.

Zhang Y, Zhang L, Yin G, Ma W, Li J, Zhou Z, Gao F.

Mol Imaging Biol. 2019 Mar 8. doi: 10.1007/s11307-019-01340-7. [Epub ahead of print]

PMID:
30850969
2.

Assessing indocyanine green pharmacokinetics in mouse liver with a dynamic diffuse fluorescence tomography system.

Zhang Y, Zhang L, Yin G, Ma W, Gao F.

J Biophotonics. 2018 Oct;11(10):e201800041. doi: 10.1002/jbio.201800041. Epub 2018 Jun 19.

PMID:
29797547
3.

Enhanced fluorescence diffuse optical tomography with indocyanine green-encapsulating liposomes targeted to receptors for vascular endothelial growth factor in tumor vasculature.

Zanganeh S, Xu Y, Hamby CV, Backer MV, Backer JM, Zhu Q.

J Biomed Opt. 2013 Dec;18(12):126014. doi: 10.1117/1.JBO.18.12.126014.

4.

Silk fibroin nanoparticles dyeing indocyanine green for imaging-guided photo-thermal therapy of glioblastoma.

Xu HL, ZhuGe DL, Chen PP, Tong MQ, Lin MT, Jiang X, Zheng YW, Chen B, Li XK, Zhao YZ.

Drug Deliv. 2018 Nov;25(1):364-375. doi: 10.1080/10717544.2018.1428244.

5.
6.

Doxorubicin and indocyanine green loaded superparamagnetic iron oxide nanoparticles with PEGylated phospholipid coating for magnetic resonance with fluorescence imaging and chemotherapy of glioma.

Shen C, Wang X, Zheng Z, Gao C, Chen X, Zhao S, Dai Z.

Int J Nanomedicine. 2018 Dec 20;14:101-117. doi: 10.2147/IJN.S173954. eCollection 2019.

8.

Cell tolerability and biodistribution in mice of indocyanine green-loaded lipid nanoparticles.

Navarro FP, Mittler F, Berger M, Josserand V, Gravier J, Vinet F, Texier I.

J Biomed Nanotechnol. 2012 Aug;8(4):594-604.

PMID:
22852469
9.

Indocyanine green loaded SPIO nanoparticles with phospholipid-PEG coating for dual-modal imaging and photothermal therapy.

Ma Y, Tong S, Bao G, Gao C, Dai Z.

Biomaterials. 2013 Oct;34(31):7706-14. doi: 10.1016/j.biomaterials.2013.07.007. Epub 2013 Jul 17.

PMID:
23871538
10.

Indocyanine Green Loaded Magnetic Carbon Nanoparticles for Near Infrared Fluorescence/Magnetic Resonance Dual-Modal Imaging and Photothermal Therapy of Tumor.

Song S, Shen H, Yang T, Wang L, Fu H, Chen H, Zhang Z.

ACS Appl Mater Interfaces. 2017 Mar 22;9(11):9484-9495. doi: 10.1021/acsami.7b00490. Epub 2017 Mar 13.

PMID:
28256824
11.

Photoacoustic tomography of human hepatic malignancies using intraoperative indocyanine green fluorescence imaging.

Miyata A, Ishizawa T, Kamiya M, Shimizu A, Kaneko J, Ijichi H, Shibahara J, Fukayama M, Midorikawa Y, Urano Y, Kokudo N.

PLoS One. 2014 Nov 7;9(11):e112667. doi: 10.1371/journal.pone.0112667. eCollection 2014.

12.

Unmixing dynamic fluorescence diffuse optical tomography images with independent component analysis.

Liu X, Liu F, Zhang Y, Bai J.

IEEE Trans Med Imaging. 2011 Sep;30(9):1591-604. doi: 10.1109/TMI.2011.2134865. Epub 2011 May 31.

PMID:
21632297
13.

Biodistribution of indocyanine green-loaded nanoparticles with surface modifications of PEG and folic acid.

Ma Y, Sadoqi M, Shao J.

Int J Pharm. 2012 Oct 15;436(1-2):25-31. doi: 10.1016/j.ijpharm.2012.06.007. Epub 2012 Jun 9.

PMID:
22692077
14.

Targeted Near-Infrared Fluorescence Imaging of Atherosclerosis: Clinical and Intracoronary Evaluation of Indocyanine Green.

Verjans JW, Osborn EA, Ughi GJ, Calfon Press MA, Hamidi E, Antoniadis AP, Papafaklis MI, Conrad MF, Libby P, Stone PH, Cambria RP, Tearney GJ, Jaffer FA.

JACC Cardiovasc Imaging. 2016 Sep;9(9):1087-1095. doi: 10.1016/j.jcmg.2016.01.034. Epub 2016 Aug 17.

15.

Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy.

Sheng Z, Hu D, Zheng M, Zhao P, Liu H, Gao D, Gong P, Gao G, Zhang P, Ma Y, Cai L.

ACS Nano. 2014 Dec 23;8(12):12310-22. doi: 10.1021/nn5062386. Epub 2014 Dec 8.

PMID:
25454579
16.

Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study.

Gurfinkel M, Thompson AB, Ralston W, Troy TL, Moore AL, Moore TA, Gust JD, Tatman D, Reynolds JS, Muggenburg B, Nikula K, Pandey R, Mayer RH, Hawrysz DJ, Sevick-Muraca EM.

Photochem Photobiol. 2000 Jul;72(1):94-102.

PMID:
10911733
17.

Biomimetic HDL nanoparticle mediated tumor targeted delivery of indocyanine green for enhanced photodynamic therapy.

Wang Y, Wang C, Ding Y, Li J, Li M, Liang X, Zhou J, Wang W.

Colloids Surf B Biointerfaces. 2016 Dec 1;148:533-540. doi: 10.1016/j.colsurfb.2016.09.037. Epub 2016 Sep 26.

PMID:
27690242
18.

[Influence of electroacupuncture on indocyanine green metabolism in liver: display of in vivo fluorescence imaging].

Zhang D, Wang SY, Li SY, Tang LM, Ma HM, Bai XD.

Zhongguo Zhen Jiu. 2013 Oct;33(10):919-23. Chinese.

PMID:
24377227
19.

Photodynamic therapy using nanoparticle loaded with indocyanine green for experimental peritoneal dissemination of gastric cancer.

Tsujimoto H, Morimoto Y, Takahata R, Nomura S, Yoshida K, Horiguchi H, Hiraki S, Ono S, Miyazaki H, Saito D, Hara I, Ozeki E, Yamamoto J, Hase K.

Cancer Sci. 2014 Dec;105(12):1626-30. doi: 10.1111/cas.12553. Epub 2014 Nov 5.

20.

Preferential tumor cellular uptake and retention of indocyanine green for in vivo tumor imaging.

Onda N, Kimura M, Yoshida T, Shibutani M.

Int J Cancer. 2016 Aug 1;139(3):673-82. doi: 10.1002/ijc.30102. Epub 2016 Apr 4.

Supplemental Content

Support Center