Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.

Extracellular S100A11 plays a critical role in spread of the fibroblast population in pancreatic cancers.

Takamatsu H, Yamamoto KI, Tomonobu N, Murata H, Inoue Y, Yamauchi A, Sumardika IW, Youyi C, Kinoshita R, Yamamura M, Fujiwara H, Mitsui Y, Araki K, Futami J, Saito K, Iioka H, Ruma IMW, Putranto EW, Nishibori M, Kondo E, Yamamoto Y, Toyooka S, Sakaguchi M.

Oncol Res. 2019 Mar 8. doi: 10.3727/096504018X15433161908259. [Epub ahead of print]

PMID:
30850029
2.

Tranilast Blocks the Interaction between the Protein S100A11 and Receptor for Advanced Glycation End Products (RAGE) V Domain and Inhibits Cell Proliferation.

Huang YK, Chou RH, Yu C.

J Biol Chem. 2016 Jul 1;291(27):14300-10. doi: 10.1074/jbc.M116.722215. Epub 2016 May 12.

3.

The Role of Fibroblasts in Pancreatic Cancer: Extracellular Matrix Versus Paracrine Factors.

Bolm L, Cigolla S, Wittel UA, Hopt UT, Keck T, Rades D, Bronsert P, Wellner UF.

Transl Oncol. 2017 Aug;10(4):578-588. doi: 10.1016/j.tranon.2017.04.009. Epub 2017 Jun 26.

4.

Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products.

Cecil DL, Johnson K, Rediske J, Lotz M, Schmidt AM, Terkeltaub R.

J Immunol. 2005 Dec 15;175(12):8296-302.

5.
6.

Increased Serotonin Signaling Contributes to the Warburg Effect in Pancreatic Tumor Cells Under Metabolic Stress and Promotes Growth of Pancreatic Tumors in Mice.

Jiang SH, Li J, Dong FY, Yang JY, Liu DJ, Yang XM, Wang YH, Yang MW, Fu XL, Zhang XX, Li Q, Pang XF, Huo YM, Li J, Zhang JF, Lee HY, Lee SJ, Qin WX, Gu JR, Sun YW, Zhang ZG.

Gastroenterology. 2017 Jul;153(1):277-291.e19. doi: 10.1053/j.gastro.2017.03.008. Epub 2017 Mar 15.

PMID:
28315323
7.

Gamma-aminobutyric acid (GABA) stimulates pancreatic cancer growth through overexpressing GABAA receptor pi subunit.

Takehara A, Hosokawa M, Eguchi H, Ohigashi H, Ishikawa O, Nakamura Y, Nakagawa H.

Cancer Res. 2007 Oct 15;67(20):9704-12.

8.

Therapeutic potential of targeting S100A11 in malignant pleural mesothelioma.

Sato H, Sakaguchi M, Yamamoto H, Tomida S, Aoe K, Shien K, Yoshioka T, Namba K, Torigoe H, Soh J, Tsukuda K, Tao H, Okabe K, Miyoshi S, Pass HI, Toyooka S.

Oncogenesis. 2018 Jan 24;7(1):11. doi: 10.1038/s41389-017-0017-3.

9.

GPR68, a proton-sensing GPCR, mediates interaction of cancer-associated fibroblasts and cancer cells.

Wiley SZ, Sriram K, Liang W, Chang SE, French R, McCann T, Sicklick J, Nishihara H, Lowy AM, Insel PA.

FASEB J. 2018 Mar;32(3):1170-1183. doi: 10.1096/fj.201700834R. Epub 2018 Jan 3.

10.

S100A11, an dual mediator for growth regulation of human keratinocytes.

Sakaguchi M, Sonegawa H, Murata H, Kitazoe M, Futami J, Kataoka K, Yamada H, Huh NH.

Mol Biol Cell. 2008 Jan;19(1):78-85. Epub 2007 Oct 31.

11.

S100A11 promotes human pancreatic cancer PANC-1 cell proliferation and is involved in the PI3K/AKT signaling pathway.

Xiao M, Li T, Ji Y, Jiang F, Ni W, Zhu J, Bao B, Lu C, Ni R.

Oncol Lett. 2018 Jan;15(1):175-182. doi: 10.3892/ol.2017.7295. Epub 2017 Oct 31.

12.
13.

IL-1α expression in pancreatic ductal adenocarcinoma affects the tumor cell migration and is regulated by the p38MAPK signaling pathway.

Tjomsland V, Bojmar L, Sandström P, Bratthäll C, Messmer D, Spångeus A, Larsson M.

PLoS One. 2013 Aug 12;8(8):e70874. doi: 10.1371/journal.pone.0070874. eCollection 2013.

15.

Comparative characterization of stroma cells and ductal epithelium in chronic pancreatitis and pancreatic ductal adenocarcinoma.

Helm O, Mennrich R, Petrick D, Goebel L, Freitag-Wolf S, Röder C, Kalthoff H, Röcken C, Sipos B, Kabelitz D, Schäfer H, Oberg HH, Wesch D, Sebens S.

PLoS One. 2014 May 5;9(5):e94357. doi: 10.1371/journal.pone.0094357. eCollection 2014.

16.

Proliferative stimulus of lung fibroblasts on lung cancer cells is impaired by the receptor for advanced glycation end-products.

Bartling B, Demling N, Silber RE, Simm A.

Am J Respir Cell Mol Biol. 2006 Jan;34(1):83-91. Epub 2005 Sep 15.

PMID:
16166741
17.

Stromal remodeling by the BET bromodomain inhibitor JQ1 suppresses the progression of human pancreatic cancer.

Yamamoto K, Tateishi K, Kudo Y, Hoshikawa M, Tanaka M, Nakatsuka T, Fujiwara H, Miyabayashi K, Takahashi R, Tanaka Y, Ijichi H, Nakai Y, Isayama H, Morishita Y, Aoki T, Sakamoto Y, Hasegawa K, Kokudo N, Fukayama M, Koike K.

Oncotarget. 2016 Sep 20;7(38):61469-61484. doi: 10.18632/oncotarget.11129.

18.

RAGE maintains high levels of NFκB and oncogenic Kras activity in pancreatic cancer.

Azizan N, Suter MA, Liu Y, Logsdon CD.

Biochem Biophys Res Commun. 2017 Nov 4;493(1):592-597. doi: 10.1016/j.bbrc.2017.08.147. Epub 2017 Sep 1.

PMID:
28867179
19.

Interleukin 35 Expression Correlates With Microvessel Density in Pancreatic Ductal Adenocarcinoma, Recruits Monocytes, and Promotes Growth and Angiogenesis of Xenograft Tumors in Mice.

Huang C, Li Z, Li N, Li Y, Chang A, Zhao T, Wang X, Wang H, Gao S, Yang S, Hao J, Ren H.

Gastroenterology. 2018 Feb;154(3):675-688. doi: 10.1053/j.gastro.2017.09.039. Epub 2017 Oct 6.

PMID:
28989066
20.

The advanced glycation end-product Nϵ -carboxymethyllysine promotes progression of pancreatic cancer: implications for diabetes-associated risk and its prevention.

Menini S, Iacobini C, de Latouliere L, Manni I, Ionta V, Blasetti Fantauzzi C, Pesce C, Cappello P, Novelli F, Piaggio G, Pugliese G.

J Pathol. 2018 Jun;245(2):197-208. doi: 10.1002/path.5072. Epub 2018 Apr 4.

PMID:
29533466

Supplemental Content

Support Center