Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

Development and Validation of a Nomogram for Preoperative Prediction of Perineural Invasion in Colorectal Cancer.

Huang X, Liu J, Wu G, Chen S, Pc FJ, Xie W, Tang W.

Med Sci Monit. 2019 Mar 6;25:1709-1717. doi: 10.12659/MSM.914900.

2.

A clinical-radiomics nomogram for the preoperative prediction of lung metastasis in colorectal cancer patients with indeterminate pulmonary nodules.

Hu T, Wang S, Huang L, Wang J, Shi D, Li Y, Tong T, Peng W.

Eur Radiol. 2019 Jan;29(1):439-449. doi: 10.1007/s00330-018-5539-3. Epub 2018 Jun 12.

PMID:
29948074
3.

Development and Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer.

Huang YQ, Liang CH, He L, Tian J, Liang CS, Chen X, Ma ZL, Liu ZY.

J Clin Oncol. 2016 Jun 20;34(18):2157-64. doi: 10.1200/JCO.2015.65.9128. Epub 2016 May 2. Erratum in: J Clin Oncol. 2016 Jul 10;34(20):2436.

PMID:
27138577
4.

A Gene-Related Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer.

Wei S, Zang J, Jia Y, Chen A, Xie Y, Huang J, Li Z, Nie G, Liu H, Liu F, Gao W.

J Invest Surg. 2019 Mar 24:1-8. doi: 10.1080/08941939.2019.1569738. [Epub ahead of print]

PMID:
30907189
5.

Individualized prediction of perineural invasion in colorectal cancer: development and validation of a radiomics prediction model.

Huang Y, He L, Dong D, Yang C, Liang C, Chen X, Ma Z, Huang X, Yao S, Liang C, Tian J, Liu Z.

Chin J Cancer Res. 2018 Feb;30(1):40-50. doi: 10.21147/j.issn.1000-9604.2018.01.05.

6.

Development and validation of an ultrasound-based nomogram to improve the diagnostic accuracy for malignant thyroid nodules.

Guo BL, Ouyang FS, Ouyang LZ, Liu ZW, Lin SJ, Meng W, Huang XY, Chen HX, Yang SM, Hu QG.

Eur Radiol. 2019 Mar;29(3):1518-1526. doi: 10.1007/s00330-018-5715-5. Epub 2018 Sep 12.

PMID:
30209592
7.

Novel Nomogram for Preoperative Prediction of Early Recurrence in Intrahepatic Cholangiocarcinoma.

Liang W, Xu L, Yang P, Zhang L, Wan D, Huang Q, Niu T, Chen F.

Front Oncol. 2018 Sep 4;8:360. doi: 10.3389/fonc.2018.00360. eCollection 2018.

8.

Development of a preoperative prediction nomogram for lymph node metastasis in colorectal cancer based on a novel serum miRNA signature and CT scans.

Qu A, Yang Y, Zhang X, Wang W, Liu Y, Zheng G, Du L, Wang C.

EBioMedicine. 2018 Nov;37:125-133. doi: 10.1016/j.ebiom.2018.09.052. Epub 2018 Oct 9.

9.

A Radiomics Nomogram for the Preoperative Prediction of Lymph Node Metastasis in Bladder Cancer.

Wu S, Zheng J, Li Y, Yu H, Shi S, Xie W, Liu H, Su Y, Huang J, Lin T.

Clin Cancer Res. 2017 Nov 15;23(22):6904-6911. doi: 10.1158/1078-0432.CCR-17-1510. Epub 2017 Sep 5.

10.

A nomogram for individual prediction of vascular invasion in primary breast cancer.

Ouyang FS, Guo BL, Huang XY, Ouyang LZ, Zhou CR, Zhang R, Wu ML, Yang ZS, Wu SK, Guo TD, Yang SM, Hu QG.

Eur J Radiol. 2019 Jan;110:30-38. doi: 10.1016/j.ejrad.2018.11.013. Epub 2018 Nov 16.

PMID:
30599870
11.

Development and validation of a radiomics nomogram for identifying invasiveness of pulmonary adenocarcinomas appearing as subcentimeter ground-glass opacity nodules.

Zhao W, Xu Y, Yang Z, Sun Y, Li C, Jin L, Gao P, He W, Wang P, Shi H, Hua Y, Li M.

Eur J Radiol. 2019 Mar;112:161-168. doi: 10.1016/j.ejrad.2019.01.021. Epub 2019 Jan 22.

12.

Development and Validation of an MRI-Based Radiomics Signature for the Preoperative Prediction of Lymph Node Metastasis in Bladder Cancer.

Wu S, Zheng J, Li Y, Wu Z, Shi S, Huang M, Yu H, Dong W, Huang J, Lin T.

EBioMedicine. 2018 Aug;34:76-84. doi: 10.1016/j.ebiom.2018.07.029. Epub 2018 Aug 2.

13.

A validated web-based nomogram for predicting positive surgical margins following breast-conserving surgery as a preoperative tool for clinical decision-making.

Pleijhuis RG, Kwast AB, Jansen L, de Vries J, Lanting R, Bart J, Wiggers T, van Dam GM, Siesling S.

Breast. 2013 Oct;22(5):773-9. doi: 10.1016/j.breast.2013.01.010. Epub 2013 Feb 23.

14.

A radiomics approach to predict lymph node metastasis and clinical outcome of intrahepatic cholangiocarcinoma.

Ji GW, Zhu FP, Zhang YD, Liu XS, Wu FY, Wang K, Xia YX, Zhang YD, Jiang WJ, Li XC, Wang XH.

Eur Radiol. 2019 Mar 26. doi: 10.1007/s00330-019-06142-7. [Epub ahead of print]

PMID:
30915561
15.

Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT.

Ma X, Wei J, Gu D, Zhu Y, Feng B, Liang M, Wang S, Zhao X, Tian J.

Eur Radiol. 2019 Feb 15. doi: 10.1007/s00330-018-5985-y. [Epub ahead of print]

PMID:
30770969
16.

A radiomics nomogram for preoperative prediction of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma.

Peng J, Zhang J, Zhang Q, Xu Y, Zhou J, Liu L.

Diagn Interv Radiol. 2018 May-Jun;24(3):121-127. doi: 10.5152/dir.2018.17467.

17.

A radiomics-based nomogram for the preoperative prediction of posthepatectomy liver failure in patients with hepatocellular carcinoma.

Cai W, He B, Hu M, Zhang W, Xiao D, Yu H, Song Q, Xiang N, Yang J, He S, Huang Y, Huang W, Jia F, Fang C.

Surg Oncol. 2019 Mar;28:78-85. doi: 10.1016/j.suronc.2018.11.013. Epub 2018 Nov 14.

PMID:
30851917
18.

A new approach to predict lymph node metastasis in solid lung adenocarcinoma: a radiomics nomogram.

Yang X, Pan X, Liu H, Gao D, He J, Liang W, Guan Y.

J Thorac Dis. 2018 Apr;10(Suppl 7):S807-S819. doi: 10.21037/jtd.2018.03.126.

19.

Nomogram Development and External Validation for Predicting the Risk of Lymph Node Metastasis in T1 Colorectal Cancer.

Oh JR, Park B, Lee S, Han KS, Youk EG, Lee DH, Kim DS, Lee DS, Hong CW, Kim BC, Kim B, Kim MJ, Park SC, Sohn DK, Chang HJ, Oh JH.

Cancer Res Treat. 2019 Jan 17. doi: 10.4143/crt.2018.569. [Epub ahead of print]

20.

Develop and validation a nomogram to predict the recurrent probability in patients with major salivary gland cancer.

Lu CH, Liu CT, Chang PH, Hung CY, Li SH, Yeh TS, Hung YS, Chou WC.

J Cancer. 2017 Jul 20;8(12):2247-2255. doi: 10.7150/jca.19461. eCollection 2017.

Supplemental Content

Support Center