Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Band Gap Closing in a Synthetic Hall Tube of Neutral Fermions.

Han JH, Kang JH, Shin Y.

Phys Rev Lett. 2019 Feb 15;122(6):065303. doi: 10.1103/PhysRevLett.122.065303.

PMID:
30822055
2.

Realization of a Cross-Linked Chiral Ladder with Neutral Fermions in a 1D Optical Lattice by Orbital-Momentum Coupling.

Kang JH, Han JH, Shin Y.

Phys Rev Lett. 2018 Oct 12;121(15):150403. doi: 10.1103/PhysRevLett.121.150403.

PMID:
30362786
3.

Experimental realization of the topological Haldane model with ultracold fermions.

Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T.

Nature. 2014 Nov 13;515(7526):237-40. doi: 10.1038/nature13915.

PMID:
25391960
4.

Observation of chiral edge states with neutral fermions in synthetic Hall ribbons.

Mancini M, Pagano G, Cappellini G, Livi L, Rider M, Catani J, Sias C, Zoller P, Inguscio M, Dalmonte M, Fallani L.

Science. 2015 Sep 25;349(6255):1510-3. doi: 10.1126/science.aaa8736.

PMID:
26404829
5.

Experimental Observation of a Topological Band Gap Opening in Ultracold Fermi Gases with Two-Dimensional Spin-Orbit Coupling.

Meng Z, Huang L, Peng P, Li D, Chen L, Xu Y, Zhang C, Wang P, Zhang J.

Phys Rev Lett. 2016 Dec 2;117(23):235304. Epub 2016 Dec 2.

PMID:
27982638
6.

Spontaneous magnetization and anomalous Hall effect in an emergent Dice lattice.

Dutta O, Przysiężna A, Zakrzewski J.

Sci Rep. 2015 Jun 9;5:11060. doi: 10.1038/srep11060.

7.

Quantum anomalous Hall phase in a one-dimensional optical lattice.

Liu S, Shao LB, Hou QZ, Xue ZY.

J Phys Condens Matter. 2018 Mar 28;30(12):124001. doi: 10.1088/1361-648X/aaab89.

PMID:
29380747
8.

Observation of coherent quench dynamics in a metallic many-body state of fermionic atoms.

Will S, Iyer D, Rigol M.

Nat Commun. 2015 Jan 27;6:6009. doi: 10.1038/ncomms7009.

PMID:
25625799
9.

Spin-orbit-coupled Bose-Einstein condensates.

Lin YJ, Jiménez-García K, Spielman IB.

Nature. 2011 Mar 3;471(7336):83-6. doi: 10.1038/nature09887.

PMID:
21368828
10.

Topological states in a ladder-like optical lattice containing ultracold atoms in higher orbital bands.

Li X, Zhao E, Vincent Liu W.

Nat Commun. 2013;4:1523. doi: 10.1038/ncomms2523.

PMID:
23443551
11.

Spin-orbit-coupled fermions in an optical lattice clock.

Kolkowitz S, Bromley SL, Bothwell T, Wall ML, Marti GE, Koller AP, Zhang X, Rey AM, Ye J.

Nature. 2017 Feb 2;542(7639):66-70. doi: 10.1038/nature20811. Epub 2016 Dec 21.

PMID:
28002409
12.

Observation of symmetry-protected topological band with ultracold fermions.

Song B, Zhang L, He C, Poon TFJ, Hajiyev E, Zhang S, Liu XJ, Jo GB.

Sci Adv. 2018 Feb 23;4(2):eaao4748. doi: 10.1126/sciadv.aao4748. eCollection 2018 Feb.

13.

Time-Reversal Symmetry-Breaking Nematic Insulators near Quantum Spin Hall Phase Transitions.

Xue F, MacDonald AH.

Phys Rev Lett. 2018 May 4;120(18):186802. doi: 10.1103/PhysRevLett.120.186802.

PMID:
29775333
14.

Synthetic Dimensions and Spin-Orbit Coupling with an Optical Clock Transition.

Livi LF, Cappellini G, Diem M, Franchi L, Clivati C, Frittelli M, Levi F, Calonico D, Catani J, Inguscio M, Fallani L.

Phys Rev Lett. 2016 Nov 25;117(22):220401. Epub 2016 Nov 23.

PMID:
27925719
15.

Exploring 4D quantum Hall physics with a 2D topological charge pump.

Lohse M, Schweizer C, Price HM, Zilberberg O, Bloch I.

Nature. 2018 Jan 3;553(7686):55-58. doi: 10.1038/nature25000.

PMID:
29300006
16.

Quantum Spin-Quantum Anomalous Hall Insulators and Topological Transitions in Functionalized Sb(111) Monolayers.

Zhou T, Zhang J, Zhao B, Zhang H, Yang Z.

Nano Lett. 2015 Aug 12;15(8):5149-55. doi: 10.1021/acs.nanolett.5b01373. Epub 2015 Jul 16.

PMID:
26171845
17.

Hidden-symmetry-protected topological semimetals on a square lattice.

Hou JM.

Phys Rev Lett. 2013 Sep 27;111(13):130403. Epub 2013 Sep 24.

PMID:
24116751
18.

Topological insulators and nematic phases from spontaneous symmetry breaking in 2D fermi systems with a quadratic band crossing.

Sun K, Yao H, Fradkin E, Kivelson SA.

Phys Rev Lett. 2009 Jul 24;103(4):046811. Epub 2009 Jul 24.

PMID:
19659389
19.

Chiral Spin Liquids in Triangular-Lattice SU(N) Fermionic Mott Insulators with Artificial Gauge Fields.

Nataf P, Lajkó M, Wietek A, Penc K, Mila F, Läuchli AM.

Phys Rev Lett. 2016 Oct 14;117(16):167202. Epub 2016 Oct 11.

PMID:
27792381
20.

Metal-insulator transition revisited for cold atoms in non-Abelian gauge potentials.

Satija II, Dakin DC, Clark CW.

Phys Rev Lett. 2006 Nov 24;97(21):216401. Epub 2006 Nov 20. Erratum in: Phys Rev Lett. 2007 Jun 29;98(26):269904.

PMID:
17155755

Supplemental Content

Support Center