Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

19F Dark-State Exchange Saturation Transfer NMR Reveals Reversible Formation of Protein-Specific Large Clusters in High-Concentration Protein Mixtures.

Edwards JM, Bramham JE, Podmore A, Bishop SM, van der Walle CF, Golovanov AP.

Anal Chem. 2019 Apr 2;91(7):4702-4708. doi: 10.1021/acs.analchem.9b00143. Epub 2019 Mar 23.

PMID:
30801173
2.

Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

Foffi G, Pastore A, Piazza F, Temussi PA.

Phys Biol. 2013 Aug;10(4):040301. Epub 2013 Aug 2.

PMID:
23912807
3.
4.

19F NMR as a Tool for Monitoring Individual Differentially Labeled Proteins in Complex Mixtures.

Edwards JM, Derrick JP, van der Walle CF, Golovanov AP.

Mol Pharm. 2018 Jul 2;15(7):2785-2796. doi: 10.1021/acs.molpharmaceut.8b00282. Epub 2018 Jun 12.

PMID:
29863878
5.

Characterizing monoclonal antibody formulations in arginine glutamate solutions using 1H NMR spectroscopy.

Kheddo P, Cliff MJ, Uddin S, van der Walle CF, Golovanov AP.

MAbs. 2016 Oct;8(7):1245-1258. Epub 2016 Aug 11.

6.

Visualizing transient dark states by NMR spectroscopy.

Anthis NJ, Clore GM.

Q Rev Biophys. 2015 Feb;48(1):35-116. doi: 10.1017/S0033583514000122.

7.

Translational Metabolomics of Head Injury: Exploring Dysfunctional Cerebral Metabolism with Ex Vivo NMR Spectroscopy-Based Metabolite Quantification.

Wolahan SM, Hirt D, Glenn TC.

In: Kobeissy FH, editor. Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Boca Raton (FL): CRC Press/Taylor & Francis; 2015. Chapter 25.

8.

Investigating Liquid-Liquid Phase Separation of a Monoclonal Antibody Using Solution-State NMR Spectroscopy: Effect of Arg·Glu and Arg·HCl.

Kheddo P, Bramham JE, Dearman RJ, Uddin S, van der Walle CF, Golovanov AP.

Mol Pharm. 2017 Aug 7;14(8):2852-2860. doi: 10.1021/acs.molpharmaceut.7b00418. Epub 2017 Jun 28.

9.

Cluster Size and Quinary Structure Determine the Rheological Effects of Antibody Self-Association at High Concentrations.

Wang W, Lilyestrom WG, Hu ZY, Scherer TM.

J Phys Chem B. 2018 Feb 22;122(7):2138-2154. doi: 10.1021/acs.jpcb.7b10728. Epub 2018 Feb 8.

PMID:
29359938
10.

Hydrogen exchange mass spectrometry reveals protein interfaces and distant dynamic coupling effects during the reversible self-association of an IgG1 monoclonal antibody.

Arora J, Hickey JM, Majumdar R, Esfandiary R, Bishop SM, Samra HS, Middaugh CR, Weis DD, Volkin DB.

MAbs. 2015;7(3):525-39. doi: 10.1080/19420862.2015.1029217.

11.

The use of native cation-exchange chromatography to study aggregation and phase separation of monoclonal antibodies.

Chen S, Lau H, Brodsky Y, Kleemann GR, Latypov RF.

Protein Sci. 2010 Jun;19(6):1191-204. doi: 10.1002/pro.396.

12.

Charge-mediated Fab-Fc interactions in an IgG1 antibody induce reversible self-association, cluster formation, and elevated viscosity.

Arora J, Hu Y, Esfandiary R, Sathish HA, Bishop SM, Joshi SB, Middaugh CR, Volkin DB, Weis DD.

MAbs. 2016 Nov/Dec;8(8):1561-1574. Epub 2016 Aug 25.

13.

Characterizing methyl-bearing side chain contacts and dynamics mediating amyloid β protofibril interactions using ¹³C(methyl)-DEST and lifetime line broadening.

Fawzi NL, Libich DS, Ying J, Tugarinov V, Clore GM.

Angew Chem Int Ed Engl. 2014 Sep 22;53(39):10345-9. doi: 10.1002/anie.201405180. Epub 2014 Aug 11.

14.

Atomic-resolution dynamics on the surface of amyloid-β protofibrils probed by solution NMR.

Fawzi NL, Ying J, Ghirlando R, Torchia DA, Clore GM.

Nature. 2011 Oct 30;480(7376):268-72. doi: 10.1038/nature10577.

15.

Personal exposure to mixtures of volatile organic compounds: modeling and further analysis of the RIOPA data.

Batterman S, Su FC, Li S, Mukherjee B, Jia C; HEI Health Review Committee.

Res Rep Health Eff Inst. 2014 Jun;(181):3-63.

16.

Speeding-up exchange-mediated saturation transfer experiments by Fourier transform.

Carneiro MG, Reddy JG, Griesinger C, Lee D.

J Biomol NMR. 2015 Nov;63(3):237-44. doi: 10.1007/s10858-015-9985-9. Epub 2015 Sep 9.

PMID:
26350257
17.

When one plus one does not equal two: fluorescence anisotropy in aggregates and multiply labeled proteins.

Zolmajd-Haghighi Z, Hanley QS.

Biophys J. 2014 Apr 1;106(7):1457-66. doi: 10.1016/j.bpj.2014.02.020.

18.

Hydrogen/deuterium exchange-mass spectrometry analysis of high concentration biotherapeutics: application to phase-separated antibody formulations.

Tian Y, Huang L, Ruotolo BT, Wang N.

MAbs. 2019 Mar 19:1-10. doi: 10.1080/19420862.2019.1589850. [Epub ahead of print]

PMID:
30890021
19.

Observation of small cluster formation in concentrated monoclonal antibody solutions and its implications to solution viscosity.

Yearley EJ, Godfrin PD, Perevozchikova T, Zhang H, Falus P, Porcar L, Nagao M, Curtis JE, Gawande P, Taing R, Zarraga IE, Wagner NJ, Liu Y.

Biophys J. 2014 Apr 15;106(8):1763-70. doi: 10.1016/j.bpj.2014.02.036.

20.

Spin ballet for sweet encounters: saturation-transfer difference NMR and X-ray crystallography complement each other in the elucidation of protein-glycan interactions.

Blaum BS, Neu U, Peters T, Stehle T.

Acta Crystallogr F Struct Biol Commun. 2018 Aug 1;74(Pt 8):451-462. doi: 10.1107/S2053230X18006581. Epub 2018 Jul 26. Review.

Supplemental Content

Support Center