Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Kondo-like phonon scattering in thermoelectric clathrates.

Ikeda MS, Euchner H, Yan X, Tomeš P, Prokofiev A, Prochaska L, Lientschnig G, Svagera R, Hartmann S, Gati E, Lang M, Paschen S.

Nat Commun. 2019 Feb 21;10(1):887. doi: 10.1038/s41467-019-08685-1.

2.

Localization of propagative phonons in a perfectly crystalline solid.

Pailhès S, Euchner H, Giordano VM, Debord R, Assy A, Gomès S, Bosak A, Machon D, Paschen S, de Boissieu M.

Phys Rev Lett. 2014 Jul 11;113(2):025506. Epub 2014 Jul 11.

PMID:
25062208
3.

Unconventional Clathrates with Transition Metal-Phosphorus Frameworks.

Wang J, Dolyniuk JA, Kovnir K.

Acc Chem Res. 2018 Jan 16;51(1):31-39. doi: 10.1021/acs.accounts.7b00469. Epub 2017 Dec 19.

4.

Quartic Anharmonicity of Rattlers and Its Effect on Lattice Thermal Conductivity of Clathrates from First Principles.

Tadano T, Tsuneyuki S.

Phys Rev Lett. 2018 Mar 9;120(10):105901. doi: 10.1103/PhysRevLett.120.105901.

PMID:
29570340
5.

Phononic Structure Engineering: the Realization of Einstein Rattling in Calcium Cobaltate for the Suppression of Thermal Conductivity.

Tian R, Kearley GJ, Yu D, Ling CD, Pham A, Embs JP, Shoko E, Li S.

Sci Rep. 2016 Jul 26;6:30530. doi: 10.1038/srep30530.

6.

Thermopower enhancement by encapsulating cerium in clathrate cages.

Prokofiev A, Sidorenko A, Hradil K, Ikeda M, Svagera R, Waas M, Winkler H, Neumaier K, Paschen S.

Nat Mater. 2013 Dec;12(12):1096-101. doi: 10.1038/nmat3756. Epub 2013 Sep 22.

PMID:
24056804
7.

Impact of rattlers on thermal conductivity of a thermoelectric clathrate: a first-principles study.

Tadano T, Gohda Y, Tsuneyuki S.

Phys Rev Lett. 2015 Mar 6;114(9):095501. Epub 2015 Mar 4.

PMID:
25793824
8.

Phonon and heat transport control using pillar-based phononic crystals.

Anufriev R, Nomura M.

Sci Technol Adv Mater. 2018 Nov 1;19(1):863-870. doi: 10.1080/14686996.2018.1542524. eCollection 2018.

9.

Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.

Yang L, Minnich AJ.

Sci Rep. 2017 Mar 14;7:44254. doi: 10.1038/srep44254.

10.

Nanostructured clathrate phonon glasses: beyond the rattling concept.

He Y, Galli G.

Nano Lett. 2014 May 14;14(5):2920-5. doi: 10.1021/nl501021m. Epub 2014 Apr 28.

PMID:
24762084
11.

Crystal Chemistry and Thermoelectric Properties of Type-I Clathrate Ba₈Ni∼3.8SixGe42.2-x (x = 0, 10, 20, 42.2).

Dong Y, Ding X, Yan X, Zhang L, Tang Z, Chen W, Rogl P, Paschen S.

Materials (Basel). 2018 Jun 4;11(6). pii: E946. doi: 10.3390/ma11060946.

12.

Ultralow thermal conductivity in all-inorganic halide perovskites.

Lee W, Li H, Wong AB, Zhang D, Lai M, Yu Y, Kong Q, Lin E, Urban JJ, Grossman JC, Yang P.

Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):8693-8697. doi: 10.1073/pnas.1711744114. Epub 2017 Jul 31.

13.

Thermal transport in thermoelectric materials with chemical bond hierarchy.

Yang J, Wang Y, Yang H, Tang W, Yang J, Chen L, Zhang W.

J Phys Condens Matter. 2019 May 8;31(18):183002. doi: 10.1088/1361-648X/ab03b6. Epub 2019 Jan 31.

PMID:
30703759
14.

Suppression of thermal conductivity by rattling modes in thermoelectric sodium cobaltate.

Voneshen DJ, Refson K, Borissenko E, Krisch M, Bosak A, Piovano A, Cemal E, Enderle M, Gutmann MJ, Hoesch M, Roger M, Gannon L, Boothroyd AT, Uthayakumar S, Porter DG, Goff JP.

Nat Mater. 2013 Nov;12(11):1028-32. doi: 10.1038/nmat3739. Epub 2013 Aug 25.

PMID:
23975057
15.

Direct measurement of individual phonon lifetimes in the clathrate compound Ba7.81Ge40.67Au5.33.

Lory PF, Pailhès S, Giordano VM, Euchner H, Nguyen HD, Ramlau R, Borrmann H, Schmidt M, Baitinger M, Ikeda M, Tomeš P, Mihalkovič M, Allio C, Johnson MR, Schober H, Sidis Y, Bourdarot F, Regnault LP, Ollivier J, Paschen S, Grin Y, de Boissieu M.

Nat Commun. 2017 Sep 8;8(1):491. doi: 10.1038/s41467-017-00584-7.

16.

Anharmonic motions of Kr in the clathrate hydrate.

Tse JS, Klug DD, Zhao JY, Sturhahn W, Alp EE, Baumert J, Gutt C, Johnson MR, Press W.

Nat Mater. 2005 Dec;4(12):917-21. Epub 2005 Nov 6.

PMID:
16267573
17.

Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity.

Nakamura Y.

Sci Technol Adv Mater. 2018 Jan 12;19(1):31-43. doi: 10.1080/14686996.2017.1413918. eCollection 2018. Review.

18.

Remarkable reduction of thermal conductivity in phosphorene phononic crystal.

Xu W, Zhang G.

J Phys Condens Matter. 2016 May 5;28(17):175401. doi: 10.1088/0953-8984/28/17/175401. Epub 2016 Apr 1.

PMID:
27033566
19.

Blocking Phonon Transport by Structural Resonances in Alloy-Based Nanophononic Metamaterials Leads to Ultralow Thermal Conductivity.

Xiong S, Sääskilahti K, Kosevich YA, Han H, Donadio D, Volz S.

Phys Rev Lett. 2016 Jul 8;117(2):025503. doi: 10.1103/PhysRevLett.117.025503. Epub 2016 Jul 8.

PMID:
27447516
20.

Phonon transport and thermoelectric properties of semiconducting Bi2Te2X (X = S, Se, Te) monolayers.

Rashid Z, Nissimagoudar AS, Li W.

Phys Chem Chem Phys. 2019 Mar 6;21(10):5679-5688. doi: 10.1039/c8cp05793a.

PMID:
30799478

Supplemental Content

Support Center