Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 106

1.

Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing.

Kleinstiver BP, Sousa AA, Walton RT, Tak YE, Hsu JY, Clement K, Welch MM, Horng JE, Malagon-Lopez J, Scarfò I, Maus MV, Pinello L, Aryee MJ, Joung JK.

Nat Biotechnol. 2019 Mar;37(3):276-282. doi: 10.1038/s41587-018-0011-0. Epub 2019 Feb 11.

PMID:
30742127
2.

Structural Basis for the Canonical and Non-canonical PAM Recognition by CRISPR-Cpf1.

Yamano T, Zetsche B, Ishitani R, Zhang F, Nishimasu H, Nureki O.

Mol Cell. 2017 Aug 17;67(4):633-645.e3. doi: 10.1016/j.molcel.2017.06.035. Epub 2017 Aug 3.

3.

Structural Basis for the Altered PAM Recognition by Engineered CRISPR-Cpf1.

Nishimasu H, Yamano T, Gao L, Zhang F, Ishitani R, Nureki O.

Mol Cell. 2017 Jul 6;67(1):139-147.e2. doi: 10.1016/j.molcel.2017.04.019. Epub 2017 Jun 6.

4.

Engineered Cpf1 variants with altered PAM specificities.

Gao L, Cox DBT, Yan WX, Manteiga JC, Schneider MW, Yamano T, Nishimasu H, Nureki O, Crosetto N, Zhang F.

Nat Biotechnol. 2017 Aug;35(8):789-792. doi: 10.1038/nbt.3900. Epub 2017 Jun 5.

5.

Error occurred: cannot get document summary

PMID:
31004485

6.

Direct observation of DNA target searching and cleavage by CRISPR-Cas12a.

Jeon Y, Choi YH, Jang Y, Yu J, Goo J, Lee G, Jeong YK, Lee SH, Kim IS, Kim JS, Jeong C, Lee S, Bae S.

Nat Commun. 2018 Jul 17;9(1):2777. doi: 10.1038/s41467-018-05245-x.

7.

Enhanced mammalian genome editing by new Cas12a orthologs with optimized crRNA scaffolds.

Teng F, Li J, Cui T, Xu K, Guo L, Gao Q, Feng G, Chen C, Han D, Zhou Q, Li W.

Genome Biol. 2019 Feb 5;20(1):15. doi: 10.1186/s13059-019-1620-8.

8.

Kinetic Basis for DNA Target Specificity of CRISPR-Cas12a.

Strohkendl I, Saifuddin FA, Rybarski JR, Finkelstein IJ, Russell R.

Mol Cell. 2018 Sep 6;71(5):816-824.e3. doi: 10.1016/j.molcel.2018.06.043. Epub 2018 Aug 2.

PMID:
30078724
9.

Engineered CRISPR-Cas9 nuclease with expanded targeting space.

Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, Okazaki S, Noda T, Abudayyeh OO, Gootenberg JS, Mori H, Oura S, Holmes B, Tanaka M, Seki M, Hirano H, Aburatani H, Ishitani R, Ikawa M, Yachie N, Zhang F, Nureki O.

Science. 2018 Sep 21;361(6408):1259-1262. doi: 10.1126/science.aas9129. Epub 2018 Aug 30.

10.

Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a).

Singh D, Mallon J, Poddar A, Wang Y, Tippana R, Yang O, Bailey S, Ha T.

Proc Natl Acad Sci U S A. 2018 May 22;115(21):5444-5449. doi: 10.1073/pnas.1718686115. Epub 2018 May 7.

11.

Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells.

Kim D, Kim J, Hur JK, Been KW, Yoon SH, Kim JS.

Nat Biotechnol. 2016 Aug;34(8):863-8. doi: 10.1038/nbt.3609. Epub 2016 Jun 6. Erratum in: Nat Biotechnol. 2016 Aug 9;34(8):888.

PMID:
27272384
12.

CRISPR-Cas12a-Assisted Recombineering in Bacteria.

Yan MY, Yan HQ, Ren GX, Zhao JP, Guo XP, Sun YC.

Appl Environ Microbiol. 2017 Aug 17;83(17). pii: e00947-17. doi: 10.1128/AEM.00947-17. Print 2017 Sep 1.

13.

Highly Efficient Cpf1-Mediated Gene Targeting in Mice Following High Concentration Pronuclear Injection.

Watkins-Chow DE, Varshney GK, Garrett LJ, Chen Z, Jimenez EA, Rivas C, Bishop KS, Sood R, Harper UL, Pavan WJ, Burgess SM.

G3 (Bethesda). 2017 Feb 9;7(2):719-722. doi: 10.1534/g3.116.038091.

14.

Simplified CRISPR tools for efficient genome editing and streamlined protocols for their delivery into mammalian cells and mouse zygotes.

Jacobi AM, Rettig GR, Turk R, Collingwood MA, Zeiner SA, Quadros RM, Harms DW, Bonthuis PJ, Gregg C, Ohtsuka M, Gurumurthy CB, Behlke MA.

Methods. 2017 May 15;121-122:16-28. doi: 10.1016/j.ymeth.2017.03.021. Epub 2017 Mar 27.

15.

Engineering CRISPR/Cpf1 with tRNA promotes genome editing capability in mammalian systems.

Wu H, Liu Q, Shi H, Xie J, Zhang Q, Ouyang Z, Li N, Yang Y, Liu Z, Zhao Y, Lai C, Ruan D, Peng J, Ge W, Chen F, Fan N, Jin Q, Liang Y, Lan T, Yang X, Wang X, Lei Z, Doevendans PA, Sluijter JPG, Wang K, Li X, Lai L.

Cell Mol Life Sci. 2018 Oct;75(19):3593-3607. doi: 10.1007/s00018-018-2810-3. Epub 2018 Apr 10.

PMID:
29637228
16.

CRISPR-Cas ribonucleoprotein mediated homology-directed repair for efficient targeted genome editing in microalgae Nannochloropsis oceanica IMET1.

Naduthodi MIS, Mohanraju P, Südfeld C, D'Adamo S, Barbosa MJ, van der Oost J.

Biotechnol Biofuels. 2019 Mar 25;12:66. doi: 10.1186/s13068-019-1401-3. eCollection 2019.

17.

Evolved Cas9 variants with broad PAM compatibility and high DNA specificity.

Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z, Liu DR.

Nature. 2018 Apr 5;556(7699):57-63. doi: 10.1038/nature26155. Epub 2018 Feb 28.

18.

Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a.

Swarts DC, van der Oost J, Jinek M.

Mol Cell. 2017 Apr 20;66(2):221-233.e4. doi: 10.1016/j.molcel.2017.03.016.

19.

Genome editing via delivery of Cas9 ribonucleoprotein.

DeWitt MA, Corn JE, Carroll D.

Methods. 2017 May 15;121-122:9-15. doi: 10.1016/j.ymeth.2017.04.003. Epub 2017 Apr 12.

PMID:
28410976
20.

The Conspicuity of CRISPR-Cpf1 System as a Significant Breakthrough in Genome Editing.

Bayat H, Modarressi MH, Rahimpour A.

Curr Microbiol. 2018 Jan;75(1):107-115. doi: 10.1007/s00284-017-1406-8. Epub 2017 Nov 30. Review.

PMID:
29189942

Supplemental Content

Support Center