Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

The nitrone spin trap 5,5‑dimethyl‑1‑pyrroline N‑oxide binds to toll-like receptor-2-TIR-BB-loop domain and dampens downstream inflammatory signaling.

Muñoz MD, Gutierrez LJ, Delignat S, Russick J, Gomez Mejiba SE, Lacroix-Desmazes S, Enriz RD, Ramirez DC.

Biochim Biophys Acta Mol Basis Dis. 2019 Jan 23. pii: S0925-4439(19)30005-5. doi: 10.1016/j.bbadis.2019.01.005. [Epub ahead of print]

PMID:
30684639
2.

Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain.

Mistry P, Laird MH, Schwarz RS, Greene S, Dyson T, Snyder GA, Xiao TS, Chauhan J, Fletcher S, Toshchakov VY, MacKerell AD Jr, Vogel SN.

Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5455-60. doi: 10.1073/pnas.1422576112. Epub 2015 Apr 13.

3.

Elucidation of novel structural scaffold in rohu TLR2 and its binding site analysis with peptidoglycan, lipoteichoic acid and zymosan ligands, and downstream MyD88 adaptor protein.

Sahoo BR, Basu M, Swain B, Dikhit MR, Jayasankar P, Samanta M.

Biomed Res Int. 2013;2013:185282. doi: 10.1155/2013/185282. Epub 2013 Jul 15.

4.

The nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide dampens lipopolysaccharide-induced transcriptomic changes in macrophages.

Muñoz MD, Della Vedova MC, Bushel PR, Ganini da Silva D, Mason RP, Zhai Z, Gomez Mejiba SE, Ramirez DC.

Inflamm Res. 2018 Jun;67(6):515-530. doi: 10.1007/s00011-018-1141-z. Epub 2018 Mar 27.

PMID:
29589052
5.

SARM modulates MyD88-mediated TLR activation through BB-loop dependent TIR-TIR interactions.

Carlsson E, Ding JL, Byrne B.

Biochim Biophys Acta. 2016 Feb;1863(2):244-53. doi: 10.1016/j.bbamcr.2015.11.021. Epub 2015 Nov 22.

6.

Structural and functional evidence for the role of the TLR2 DD loop in TLR1/TLR2 heterodimerization and signaling.

Gautam JK, Ashish, Comeau LD, Krueger JK, Smith MF Jr.

J Biol Chem. 2006 Oct 6;281(40):30132-42. Epub 2006 Aug 7.

7.

Recruitment of TLR adapter TRIF to TLR4 signaling complex is mediated by the second helical region of TRIF TIR domain.

Piao W, Ru LW, Piepenbrink KH, Sundberg EJ, Vogel SN, Toshchakov VY.

Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):19036-41. doi: 10.1073/pnas.1313575110. Epub 2013 Nov 5.

8.

Divergent roles of amino acid residues inside and outside the BB loop affect human Toll-like receptor (TLR)2/2, TLR2/1 and TLR2/6 responsiveness.

Qiu Y, Ding Y, Zou L, Tan Z, Liu T, Fu X, Xu W.

PLoS One. 2013 Apr 23;8(4):e61508. doi: 10.1371/journal.pone.0061508. Print 2013.

9.

Identification of binding sites for myeloid differentiation primary response gene 88 (MyD88) and Toll-like receptor 4 in MyD88 adapter-like (Mal).

Bovijn C, Desmet AS, Uyttendaele I, Van Acker T, Tavernier J, Peelman F.

J Biol Chem. 2013 Apr 26;288(17):12054-66. doi: 10.1074/jbc.M112.415810. Epub 2013 Mar 4.

10.

In silico approach to inhibition of signaling pathways of Toll-like receptors 2 and 4 by ST2L.

Basith S, Manavalan B, Govindaraj RG, Choi S.

PLoS One. 2011;6(8):e23989. doi: 10.1371/journal.pone.0023989. Epub 2011 Aug 29.

12.

Probing subtle conformational changes induced by phosphorylation and point mutations in the TIR domains of TLR2 and TLR3.

Mahita J, Sowdhamini R.

Proteins. 2018 May;86(5):524-535. doi: 10.1002/prot.25471. Epub 2018 Feb 9.

PMID:
29383749
13.

Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling.

Yamamoto M, Sato S, Mori K, Hoshino K, Takeuchi O, Takeda K, Akira S.

J Immunol. 2002 Dec 15;169(12):6668-72.

14.

Mutational analysis identifies residues crucial for homodimerization of myeloid differentiation factor 88 (MyD88) and for its function in immune cells.

Loiarro M, Volpe E, Ruggiero V, Gallo G, Furlan R, Maiorino C, Battistini L, Sette C.

J Biol Chem. 2013 Oct 18;288(42):30210-22. doi: 10.1074/jbc.M113.490946. Epub 2013 Sep 9.

15.

Differential adapter recruitment by TLR2 co-receptors.

Piao W, Ru LW, Toshchakov VY.

Pathog Dis. 2016 Jul;74(5). pii: ftw043. doi: 10.1093/femspd/ftw043. Epub 2016 May 4.

16.

Three conserved MyD88-recruiting TLR residues exert different effects on the human TLR4 signaling pathway.

Ding Y, Qiu Y, Zou L, Tan Z, Dai J, Xu W.

Immunol Res. 2015 Jun;62(2):213-21. doi: 10.1007/s12026-015-8652-2.

PMID:
25948473
17.

Molecular analysis of the binding mode of Toll/interleukin-1 receptor (TIR) domain proteins during TLR2 signaling.

Nada M, Ohnishi H, Tochio H, Kato Z, Kimura T, Kubota K, Yamamoto T, Kamatari YO, Tsutsumi N, Shirakawa M, Kondo N.

Mol Immunol. 2012 Oct;52(3-4):108-16. doi: 10.1016/j.molimm.2012.05.003. Epub 2012 Jun 4.

PMID:
22673208
18.

Structural basis for the multiple interactions of the MyD88 TIR domain in TLR4 signaling.

Ohnishi H, Tochio H, Kato Z, Orii KE, Li A, Kimura T, Hiroaki H, Kondo N, Shirakawa M.

Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10260-5. doi: 10.1073/pnas.0812956106. Epub 2009 Jun 8.

19.

Peptide-mediated interference of TIR domain dimerization in MyD88 inhibits interleukin-1-dependent activation of NF-{kappa}B.

Loiarro M, Sette C, Gallo G, Ciacci A, Fantò N, Mastroianni D, Carminati P, Ruggiero V.

J Biol Chem. 2005 Apr 22;280(16):15809-14. Epub 2005 Mar 8.

20.

A TIR domain protein from E. faecalis attenuates MyD88-mediated signaling and NF-κB activation.

Zou J, Baghdayan AS, Payne SJ, Shankar N.

PLoS One. 2014 Nov 4;9(11):e112010. doi: 10.1371/journal.pone.0112010. eCollection 2014.

Supplemental Content

Support Center