Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.

Correction to: Evaluation of accuracy dependence of Raman spectroscopic models on the ratio of calibration and validation points for non-invasive glucose sensing.

Singh SP, Mukherjee S, Galindo LH, So PTC, Dasari RR, Khan UZ, Kannan R, Upendran A, Kang JW.

Anal Bioanal Chem. 2019 Feb;411(6):1297. doi: 10.1007/s00216-018-1542-4.

PMID:
30613839
2.

Evaluation of accuracy dependence of Raman spectroscopic models on the ratio of calibration and validation points for non-invasive glucose sensing.

Singh SP, Mukherjee S, Galindo LH, So PTC, Dasari RR, Khan UZ, Kannan R, Upendran A, Kang JW.

Anal Bioanal Chem. 2018 Oct;410(25):6469-6475. doi: 10.1007/s00216-018-1244-y. Epub 2018 Jul 25. Erratum in: Anal Bioanal Chem. 2019 Feb;411(6):1297.

PMID:
30046865
3.

Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer.

Lyandres O, Shah NC, Yonzon CR, Walsh JT Jr, Glucksberg MR, Van Duyne RP.

Anal Chem. 2005 Oct 1;77(19):6134-9.

PMID:
16194070
4.

Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy.

Dingari NC, Barman I, Kang JW, Kong CR, Dasari RR, Feld MS.

J Biomed Opt. 2011 Aug;16(8):087009. doi: 10.1117/1.3611006.

5.

Glucose sensing using near-infrared surface-enhanced Raman spectroscopy: gold surfaces, 10-day stability, and improved accuracy.

Stuart DA, Yonzon CR, Zhang X, Lyandres O, Shah NC, Glucksberg MR, Walsh JT, Van Duyne RP.

Anal Chem. 2005 Jul 1;77(13):4013-9.

PMID:
15987105
6.

Modelling, verification, and calibration of a photoacoustics based continuous non-invasive blood glucose monitoring system.

Pai PP, Sanki PK, Sarangi S, Banerjee S.

Rev Sci Instrum. 2015 Jun;86(6):064901. doi: 10.1063/1.4922416.

PMID:
26133859
7.
9.

Correction of XRII geometric distortion using a liquid-filled grid and image subtraction.

Holdsworth DW, Pollmann SI, Nikolov HN, Fahrig R.

Med Phys. 2005 Jan;32(1):55-64.

PMID:
15719955
10.

Real-time continuous glucose monitoring shows high accuracy within 6 hours after sensor calibration: a prospective study.

Yue XY, Zheng Y, Cai YH, Yin NN, Zhou JX.

PLoS One. 2013;8(3):e60070. doi: 10.1371/journal.pone.0060070. Epub 2013 Mar 28.

11.

The surveillance error grid.

Klonoff DC, Lias C, Vigersky R, Clarke W, Parkes JL, Sacks DB, Kirkman MS, Kovatchev B; Error Grid Panel.

J Diabetes Sci Technol. 2014 Jul;8(4):658-72. doi: 10.1177/1932296814539589. Epub 2014 Jun 13.

12.

Accurate spectroscopic calibration for noninvasive glucose monitoring by modeling the physiological glucose dynamics.

Barman I, Kong CR, Singh GP, Dasari RR, Feld MS.

Anal Chem. 2010 Jul 15;82(14):6104-14. doi: 10.1021/ac100810e.

13.

Accuracy and limitations of continuous glucose monitoring using spectroscopy in critically ill patients.

van Hooijdonk RT, Winters T, Fischer JC, van Dongen-Lases EC, Krinsley JS, Preiser JC, Schultz MJ.

Ann Intensive Care. 2014 Mar 6;4(1):8. doi: 10.1186/2110-5820-4-8.

14.

Feasibility of an Orthogonal Redundant Sensor incorporating Optical plus Redundant Electrochemical Glucose Sensing.

McAuley SA, Dang TT, Horsburgh JC, Bansal A, Ward GM, Aroyan S, Jenkins AJ, MacIsaac RJ, Shah RV, O'Neal DN.

J Diabetes Sci Technol. 2016 May 3;10(3):679-88. doi: 10.1177/1932296816629982. Print 2016 May.

15.

Requirements for calibration in noninvasive glucose monitoring by Raman spectroscopy.

Lipson J, Bernhardt J, Block U, Freeman WR, Hofmeister R, Hristakeva M, Lenosky T, McNamara R, Petrasek D, Veltkamp D, Waydo S; C8 MediSensors,.

J Diabetes Sci Technol. 2009 Mar 1;3(2):233-41.

16.

Point and trend accuracy of a continuous intravenous microdialysis-based glucose-monitoring device in critically ill patients: a prospective study.

Leopold JH, van Hooijdonk RTM, Boshuizen M, Winters T, Bos LD, Abu-Hanna A, Hoek AMT, Fischer JC, van Dongen-Lases EC, Schultz MJ.

Ann Intensive Care. 2016 Dec;6(1):68. doi: 10.1186/s13613-016-0171-3. Epub 2016 Jul 19.

17.

Multivariate regression and discreminant calibration models for a novel optical non-invasive blood glucose measurement method named pulse glucometry.

Yamakoshi Y, Ogawa M, Yamakoshi T, Tamura T, Yamakoshi K.

Conf Proc IEEE Eng Med Biol Soc. 2009;2009:126-9. doi: 10.1109/IEMBS.2009.5335104.

PMID:
19965121
18.

The Continuous Glucose Monitoring System during pregnancy of women with type 1 diabetes mellitus: accuracy assessment.

Kerssen A, de Valk HW, Visser GH.

Diabetes Technol Ther. 2004 Oct;6(5):645-51.

PMID:
15628818
19.

Calibration transfer of a Raman spectroscopic quantification method for the assessment of liquid detergent compositions from at-line laboratory to in-line industrial scale.

Brouckaert D, Uyttersprot JS, Broeckx W, De Beer T.

Talanta. 2018 Mar 1;179:386-392. doi: 10.1016/j.talanta.2017.11.025. Epub 2017 Nov 20.

PMID:
29310249
20.

Noninvasive glucose monitoring: increasing accuracy by combination of multi-technology and multi-sensors.

Harman-Boehm I, Gal A, Raykhman AM, Naidis E, Mayzel Y.

J Diabetes Sci Technol. 2010 May 1;4(3):583-95.

Supplemental Content

Support Center