Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

Correction: Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity.

Wibowo A, Becker C, Marconi G, Durr J, Price J, Hagmann J, Papareddy R, Putra H, Kageyama J, Becker J, Weigel D, Gutierrez-Marcos J.

Elife. 2018 Dec 21;7. pii: e44302. doi: 10.7554/eLife.44302.

2.

Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity.

Wibowo A, Becker C, Marconi G, Durr J, Price J, Hagmann J, Papareddy R, Putra H, Kageyama J, Becker J, Weigel D, Gutierrez-Marcos J.

Elife. 2016 May 31;5. pii: e13546. doi: 10.7554/eLife.13546. Erratum in: Elife. 2018 Dec 21;7:.

3.

Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters.

Stephan AB, Kunz HH, Yang E, Schroeder JI.

Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):E5242-9. doi: 10.1073/pnas.1519555113. Epub 2016 Aug 15.

4.

α-tubulin is rapidly phosphorylated in response to hyperosmotic stress in rice and Arabidopsis.

Ban Y, Kobayashi Y, Hara T, Hamada T, Hashimoto T, Takeda S, Hattori T.

Plant Cell Physiol. 2013 Jun;54(6):848-58. doi: 10.1093/pcp/pct065. Epub 2013 Apr 28.

PMID:
23628996
5.

Parental epigenetic asymmetry of PRC2-mediated histone modifications in the Arabidopsis endosperm.

Moreno-Romero J, Jiang H, Santos-González J, Köhler C.

EMBO J. 2016 Jun 15;35(12):1298-311. doi: 10.15252/embj.201593534. Epub 2016 Apr 25.

6.

Hyperosmotic stress induces a rapid and transient increase in inositol 1,4,5-trisphosphate independent of abscisic acid in Arabidopsis cell culture.

Takahashi S, Katagiri T, Hirayama T, Yamaguchi-Shinozaki K, Shinozaki K.

Plant Cell Physiol. 2001 Feb;42(2):214-22.

PMID:
11230576
7.

Hyperosmotic priming of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome.

Sani E, Herzyk P, Perrella G, Colot V, Amtmann A.

Genome Biol. 2013 Jun 14;14(6):R59. doi: 10.1186/gb-2013-14-6-r59.

8.

Identical Hik-Rre systems are involved in perception and transduction of salt signals and hyperosmotic signals but regulate the expression of individual genes to different extents in synechocystis.

Shoumskaya MA, Paithoonrangsarid K, Kanesaki Y, Los DA, Zinchenko VV, Tanticharoen M, Suzuki I, Murata N.

J Biol Chem. 2005 Jun 3;280(22):21531-8. Epub 2005 Mar 31.

9.

Genome-wide survey of DNA-binding proteins in Arabidopsis thaliana: analysis of distribution and functions.

Malhotra S, Sowdhamini R.

Nucleic Acids Res. 2013 Aug;41(15):7212-9. doi: 10.1093/nar/gkt505. Epub 2013 Jun 17.

10.

Expression and function of AtMBD4L, the single gene encoding the nuclear DNA glycosylase MBD4L in Arabidopsis.

Nota F, Cambiagno DA, Ribone P, Alvarez ME.

Plant Sci. 2015 Jun;235:122-9. doi: 10.1016/j.plantsci.2015.03.011. Epub 2015 Mar 20.

PMID:
25900572
11.

The effect of phospholipase Dalpha3 on Arabidopsis response to hyperosmotic stress and glucose.

Hong Y, Pan X, Welti R, Wang X.

Plant Signal Behav. 2008 Dec;3(12):1099-100.

12.

Mutations in the hyperosmotic stress-responsive mitochondrial BASIC AMINO ACID CARRIER2 enhance proline accumulation in Arabidopsis.

Toka I, Planchais S, Cabassa C, Justin AM, De Vos D, Richard L, Savouré A, Carol P.

Plant Physiol. 2010 Apr;152(4):1851-62. doi: 10.1104/pp.109.152371. Epub 2010 Feb 19.

13.

The DNA glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in Arabidopsis.

Zhu J, Kapoor A, Sridhar VV, Agius F, Zhu JK.

Curr Biol. 2007 Jan 9;17(1):54-9.

14.

Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.

Ding Y, Liu N, Virlouvet L, Riethoven JJ, Fromm M, Avramova Z.

BMC Plant Biol. 2013 Dec 30;13:229. doi: 10.1186/1471-2229-13-229.

15.

Molecular characterization of a putative plant homolog of MBD4 DNA glycosylase.

Ramiro-Merina Á, Ariza RR, Roldán-Arjona T.

DNA Repair (Amst). 2013 Nov;12(11):890-8. doi: 10.1016/j.dnarep.2013.08.002. Epub 2013 Aug 30.

PMID:
23994068
16.

Genome-wide analysis and evolutionary study of sucrose non-fermenting 1-related protein kinase 2 (SnRK2) gene family members in Arabidopsis and Oryza.

Saha J, Chatterjee C, Sengupta A, Gupta K, Gupta B.

Comput Biol Chem. 2014 Apr;49:59-70. doi: 10.1016/j.compbiolchem.2013.09.005. Epub 2013 Oct 25.

PMID:
24225178
17.

Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis.

Kagale S, Links MG, Rozwadowski K.

Plant Physiol. 2010 Mar;152(3):1109-34. doi: 10.1104/pp.109.151704. Epub 2010 Jan 22.

18.

Overexpression of AtOGG1, a DNA glycosylase/AP lyase, enhances seed longevity and abiotic stress tolerance in Arabidopsis.

Chen H, Chu P, Zhou Y, Li Y, Liu J, Ding Y, Tsang EW, Jiang L, Wu K, Huang S.

J Exp Bot. 2012 Jun;63(11):4107-21. doi: 10.1093/jxb/ers093. Epub 2012 Apr 2.

PMID:
22473985
19.

Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation.

Agius F, Kapoor A, Zhu JK.

Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11796-801. Epub 2006 Jul 24.

20.

AthaMap: an online resource for in silico transcription factor binding sites in the Arabidopsis thaliana genome.

Steffens NO, Galuschka C, Schindler M, Bülow L, Hehl R.

Nucleic Acids Res. 2004 Jan 1;32(Database issue):D368-72.

Supplemental Content

Support Center