Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

Two-Stage Cultivation of Dunaliella tertiolecta with Glycerol and Triethylamine for Lipid Accumulation: a Viable Way To Alleviate the Inhibitory Effect of Triethylamine on Biomass.

Liang MH, Xue LL, Jiang JG.

Appl Environ Microbiol. 2019 Feb 6;85(4). pii: e02614-18. doi: 10.1128/AEM.02614-18. Print 2019 Feb 15.

PMID:
30552184
2.

Modelling of microalgal growth and lipid production in Dunaliella tertiolecta using nitrogen-phosphorus-potassium fertilizer medium in sintered disk chromatographic glass bubble column.

Kumar A, Guria C, Chitres G, Chakraborty A, Pathak AK.

Bioresour Technol. 2016 Oct;218:1021-36. doi: 10.1016/j.biortech.2016.07.055. Epub 2016 Jul 14.

PMID:
27450983
3.

Continual production of glycerol from carbon dioxide by Dunaliella tertiolecta.

Chow YY, Goh SJ, Su Z, Ng DH, Lim CY, Lim NY, Lin H, Fang L, Lee YK.

Bioresour Technol. 2013 May;136:550-5. doi: 10.1016/j.biortech.2013.03.040. Epub 2013 Mar 15.

PMID:
23567730
4.

The role of micronutrients and strategies for optimized continual glycerol production from carbon dioxide by Dunaliella tertiolecta.

Chow Y, Tu WY, Wang D, Ng DH, Lee YK.

Biotechnol Bioeng. 2015 Oct;112(10):2163-71. doi: 10.1002/bit.25608. Epub 2015 Jun 30.

PMID:
25855006
5.

Utilization of biodiesel-derived glycerol or xylose for increased growth and lipid production by indigenous microalgae.

Leite GB, Paranjape K, Abdelaziz AEM, Hallenbeck PC.

Bioresour Technol. 2015 May;184:123-130. doi: 10.1016/j.biortech.2014.10.117. Epub 2014 Oct 30.

PMID:
25466992
6.

Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol.

Chen YH, Walker TH.

Biotechnol Lett. 2011 Oct;33(10):1973-83. doi: 10.1007/s10529-011-0672-y. Epub 2011 Jun 21.

PMID:
21691839
7.

Nitrate Reductase Inhibition Induces Lipid Enhancement of Dunaliella Tertiolecta for Biodiesel Production.

Benhima R, El Arroussi H, Kadmiri IM, El Mernissi N, Wahby I, Bennis I, Smouni A, Bendaou N.

ScientificWorldJournal. 2018 Dec 2;2018:6834725. doi: 10.1155/2018/6834725. eCollection 2018.

8.

Photosynthetic performance, lipid production and biomass composition in response to nitrogen limitation in marine microalgae.

Jiang Y, Yoshida T, Quigg A.

Plant Physiol Biochem. 2012 May;54:70-7. doi: 10.1016/j.plaphy.2012.02.012. Epub 2012 Feb 13.

PMID:
22387274
9.

Effect of lipid-free microalgal biomass and waste glycerol on growth and lipid production of Scenedesmus obliquus: Innovative waste recycling for extraordinary lipid production.

Abomohra AE, Eladel H, El-Esawi M, Wang S, Wang Q, He Z, Feng Y, Shang H, Hanelt D.

Bioresour Technol. 2018 Feb;249:992-999. doi: 10.1016/j.biortech.2017.10.102. Epub 2017 Nov 4.

PMID:
29145127
10.

Effects of Salt Concentrations and Nitrogen and Phosphorus Starvations on Neutral Lipid Contents in the Green Microalga Dunaliella tertiolecta.

Liang MH, Qv XY, Chen H, Wang Q, Jiang JG.

J Agric Food Chem. 2017 Apr 19;65(15):3190-3197. doi: 10.1021/acs.jafc.7b00552. Epub 2017 Apr 10.

PMID:
28368591
11.

Carbon dioxide utilisation of Dunaliella tertiolecta for carbon bio-mitigation in a semicontinuous photobioreactor.

Farrelly DJ, Brennan L, Everard CD, McDonnell KP.

Appl Microbiol Biotechnol. 2014 Apr;98(7):3157-64. doi: 10.1007/s00253-013-5322-y. Epub 2013 Oct 27.

PMID:
24162085
12.

Ultrasound-enhanced and microwave-assisted extraction of lipid from Dunaliella tertiolecta and fatty acid profile analysis.

Qv XY, Zhou QF, Jiang JG.

J Sep Sci. 2014 Oct;37(20):2991-9. doi: 10.1002/jssc.201400458. Epub 2014 Sep 18.

PMID:
25143311
13.

NPK-10:26:26 complex fertilizer assisted optimal cultivation of Dunaliella tertiolecta using response surface methodology and genetic algorithm.

Kumar A, Pathak AK, Guria C.

Bioresour Technol. 2015 Oct;194:117-29. doi: 10.1016/j.biortech.2015.06.082. Epub 2015 Jun 24.

PMID:
26188554
14.

Continuous microalgae cultivation in a photobioreactor.

Tang H, Chen M, Ng KY, Salley SO.

Biotechnol Bioeng. 2012 Oct;109(10):2468-74. doi: 10.1002/bit.24516. Epub 2012 May 4.

PMID:
22488253
15.

Expression of the heterologous Dunaliella tertiolecta fatty acyl-ACP thioesterase leads to increased lipid production in Chlamydomonas reinhardtii.

Tan KW, Lee YK.

J Biotechnol. 2017 Apr 10;247:60-67. doi: 10.1016/j.jbiotec.2017.03.004. Epub 2017 Mar 7.

PMID:
28279815
16.

Cultivation of marine microalgae using shale gas flowback water and anaerobic digestion effluent as the cultivation medium.

Racharaks R, Ge X, Li Y.

Bioresour Technol. 2015 Sep;191:146-56. doi: 10.1016/j.biortech.2015.04.065. Epub 2015 Apr 23.

PMID:
25989090
17.

Biokinetic model-based multi-objective optimization of Dunaliella tertiolecta cultivation using elitist non-dominated sorting genetic algorithm with inheritance.

Sinha SK, Kumar M, Guria C, Kumar A, Banerjee C.

Bioresour Technol. 2017 Oct;242:206-217. doi: 10.1016/j.biortech.2017.03.146. Epub 2017 Mar 27.

PMID:
28416126
18.

System development for linked-fermentation production of solvents from algal biomass.

Nakas JP, Schaedle M, Parkinson CM, Coonley CE, Tanenbaum SW.

Appl Environ Microbiol. 1983 Nov;46(5):1017-23.

19.

RNA-Seq transcriptomic analysis with Bag2D software identifies key pathways enhancing lipid yield in a high lipid-producing mutant of the non-model green alga Dunaliella tertiolecta.

Yao L, Tan TW, Ng YK, Ban KH, Shen H, Lin H, Lee YK.

Biotechnol Biofuels. 2015 Nov 25;8:191. doi: 10.1186/s13068-015-0382-0. eCollection 2015.

20.

Increasing the Triacylglycerol Content in Dunaliella tertiolecta through Isolation of Starch-Deficient Mutants.

Sirikhachornkit A, Vuttipongchaikij S, Suttangkakul A, Yokthongwattana K, Juntawong P, Pokethitiyook P, Kangvansaichol K, Meetam M.

J Microbiol Biotechnol. 2016 May 28;26(5):854-66. doi: 10.4014/jmb.1510.10022.

Supplemental Content

Support Center