Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94


An efficient proteome-wide strategy for discovery and characterization of cellular nucleotide-protein interactions.

Lim YT, Prabhu N, Dai L, Go KD, Chen D, Sreekumar L, Egeblad L, Eriksson S, Chen L, Veerappan S, Teo HL, Tan CSH, Lengqvist J, Larsson A, Sobota RM, Nordlund P.

PLoS One. 2018 Dec 6;13(12):e0208273. doi: 10.1371/journal.pone.0208273. eCollection 2018.


The Cellular Thermal Shift Assay: A Novel Biophysical Assay for In Situ Drug Target Engagement and Mechanistic Biomarker Studies.

Martinez Molina D, Nordlund P.

Annu Rev Pharmacol Toxicol. 2016;56:141-61. doi: 10.1146/annurev-pharmtox-010715-103715. Epub 2015 Nov 9. Review.


Horizontal Cell Biology: Monitoring Global Changes of Protein Interaction States with the Proteome-Wide Cellular Thermal Shift Assay (CETSA).

Dai L, Prabhu N, Yu LY, Bacanu S, Ramos AD, Nordlund P.

Annu Rev Biochem. 2019 Apr 2. doi: 10.1146/annurev-biochem-062917-012837. [Epub ahead of print]


Monitoring structural modulation of redox-sensitive proteins in cells with MS-CETSA.

Sun W, Dai L, Yu H, Puspita B, Zhao T, Li F, Tan JL, Lim YT, Chen MW, Sobota RM, Tenen DG, Prabhu N, Nordlund P.

Redox Biol. 2019 Mar 14;24:101168. doi: 10.1016/j.redox.2019.101168. [Epub ahead of print]


A High-Throughput Dose-Response Cellular Thermal Shift Assay for Rapid Screening of Drug Target Engagement in Living Cells, Exemplified Using SMYD3 and IDO1.

McNulty DE, Bonnette WG, Qi H, Wang L, Ho TF, Waszkiewicz A, Kallal LA, Nagarajan RP, Stern M, Quinn AM, Creasy CL, Su DS, Graves AP, Annan RS, Sweitzer SM, Holbert MA.

SLAS Discov. 2018 Jan;23(1):34-46. doi: 10.1177/2472555217732014. Epub 2017 Sep 28.


A widely-applicable high-throughput cellular thermal shift assay (CETSA) using split Nano Luciferase.

Martinez NJ, Asawa RR, Cyr MG, Zakharov A, Urban DJ, Roth JS, Wallgren E, Klumpp-Thomas C, Coussens NP, Rai G, Yang SM, Hall MD, Marugan JJ, Simeonov A, Henderson MJ.

Sci Rep. 2018 Jun 21;8(1):9472. doi: 10.1038/s41598-018-27834-y.


Proteome-wide discovery and characterizations of nucleotide-binding proteins with affinity-labeled chemical probes.

Xiao Y, Guo L, Jiang X, Wang Y.

Anal Chem. 2013 Mar 19;85(6):3198-206. doi: 10.1021/ac303383c. Epub 2013 Feb 28.


Positioning High-Throughput CETSA in Early Drug Discovery through Screening against B-Raf and PARP1.

Shaw J, Dale I, Hemsley P, Leach L, Dekki N, Orme JP, Talbot V, Narvaez AJ, Bista M, Martinez Molina D, Dabrowski M, Main MJ, Gianni D.

SLAS Discov. 2019 Feb;24(2):121-132. doi: 10.1177/2472555218813332. Epub 2018 Dec 13.


Utilizing Yeast Surface Human Proteome Display Libraries to Identify Small Molecule-Protein Interactions.

Bidlingmaier S, Liu B.

Methods Mol Biol. 2015;1319:203-14. doi: 10.1007/978-1-4939-2748-7_11.


Across-proteome modeling of dimer structures for the bottom-up assembly of protein-protein interaction networks.

Maheshwari S, Brylinski M.

BMC Bioinformatics. 2017 May 12;18(1):257. doi: 10.1186/s12859-017-1675-z.


Binding site prediction for protein-protein interactions and novel motif discovery using re-occurring polypeptide sequences.

Amos-Binks A, Patulea C, Pitre S, Schoenrock A, Gui Y, Green JR, Golshani A, Dehne F.

BMC Bioinformatics. 2011 Jun 2;12:225. doi: 10.1186/1471-2105-12-225.


Determining direct binders of the Androgen Receptor using a high-throughput Cellular Thermal Shift Assay.

Shaw J, Leveridge M, Norling C, Karén J, Molina DM, O'Neill D, Dowling JE, Davey P, Cowan S, Dabrowski M, Main M, Gianni D.

Sci Rep. 2018 Jan 9;8(1):163. doi: 10.1038/s41598-017-18650-x.


Global discovery of protein kinases and other nucleotide-binding proteins by mass spectrometry.

Xiao Y, Wang Y.

Mass Spectrom Rev. 2016 Sep;35(5):601-19. doi: 10.1002/mas.21447. Epub 2014 Nov 5. Review.


StableIsotope Labeling with Amino Acids in Cell Culture (SILAC)-based strategy for proteome-wide thermodynamic analysis of protein-ligand binding interactions.

Tran DT, Adhikari J, Fitzgerald MC.

Mol Cell Proteomics. 2014 Jul;13(7):1800-13. doi: 10.1074/mcp.M113.034702. Epub 2014 Apr 16.


Target Engagement of Small Molecules: Thermal Profiling Approaches on Different Levels.

Reckzeh ES, Brockmeyer A, Metz M, Waldmann H, Janning P.

Methods Mol Biol. 2019;1888:73-98. doi: 10.1007/978-1-4939-8891-4_4.


Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

Foffi G, Pastore A, Piazza F, Temussi PA.

Phys Biol. 2013 Aug;10(4):040301. Epub 2013 Aug 2.


Scanning the human proteome for calmodulin-binding proteins.

Shen X, Valencia CA, Szostak JW, Dong B, Liu R.

Proc Natl Acad Sci U S A. 2005 Apr 26;102(17):5969-74. Epub 2005 Apr 19. Erratum in: Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9734. Szostak, Jack [corrected to Szostak, Jack W].


Developing a powerful in silico tool for the discovery of novel caspase-3 substrates: a preliminary screening of the human proteome.

Ayyash M, Tamimi H, Ashhab Y.

BMC Bioinformatics. 2012 Jan 23;13:14. doi: 10.1186/1471-2105-13-14.


Role of rate-limiting enzymes of nucleotide metabolism in taurocholate-induced DNA synthesis inhibition.

Monte JM, Barbero ER, Villanueva GR, Serrano MA, Marin JJ.

J Hepatol. 1996 Aug;25(2):191-9.


Screening for Target Engagement using the Cellular Thermal Shift Assay - CETSA.

Axelsson H, Almqvist H, Seashore-Ludlow B, Lundbäck T.

In: Sittampalam GS, Coussens NP, Brimacombe K, Grossman A, Arkin M, Auld D, Austin C, Baell J, Bejcek B, Caaveiro JMM, Chung TDY, Dahlin JL, Devanaryan V, Foley TL, Glicksman M, Hall MD, Haas JV, Inglese J, Iversen PW, Kahl SD, Kales SC, Lal-Nag M, Li Z, McGee J, McManus O, Riss T, Trask OJ Jr., Weidner JR, Wildey MJ, Xia M, Xu X, editors. Assay Guidance Manual [Internet]. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004-.
2016 Jul 1.

Supplemental Content

Support Center