Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 106

1.

Crystal structures of VIM-1 complexes explain active site heterogeneity in VIM-class metallo-β-lactamases.

Salimraj R, Hinchliffe P, Kosmopoulou M, Tyrrell JM, Brem J, van Berkel SS, Verma A, Owens RJ, McDonough MA, Walsh TR, Schofield CJ, Spencer J.

FEBS J. 2019 Jan;286(1):169-183. doi: 10.1111/febs.14695. Epub 2018 Nov 23.

2.

The structure of the metallo-β-lactamase VIM-2 in complex with a triazolylthioacetamide inhibitor.

Christopeit T, Yang KW, Yang SK, Leiros HK.

Acta Crystallogr F Struct Biol Commun. 2016 Nov 1;72(Pt 11):813-819. Epub 2016 Oct 24.

3.

Structural and computational investigations of VIM-7: insights into the substrate specificity of vim metallo-β-lactamases.

Borra PS, Leiros HK, Ahmad R, Spencer J, Leiros I, Walsh TR, Sundsfjord A, Samuelsen O.

J Mol Biol. 2011 Aug 5;411(1):174-89. doi: 10.1016/j.jmb.2011.05.035. Epub 2011 May 30.

PMID:
21645522
4.

Structural and biochemical characterization of VIM-26 shows that Leu224 has implications for the substrate specificity of VIM metallo-β-lactamases.

Leiros HK, Edvardsen KS, Bjerga GE, Samuelsen Ø.

FEBS J. 2015 Mar;282(6):1031-42. doi: 10.1111/febs.13200. Epub 2015 Feb 6.

5.

1,4,7-Triazacyclononane Restores the Activity of β-Lactam Antibiotics against Metallo-β-Lactamase-Producing Enterobacteriaceae: Exploration of Potential Metallo-β-Lactamase Inhibitors.

Somboro AM, Amoako DG, Osei Sekyere J, Kumalo HM, Khan R, Bester LA, Essack SY.

Appl Environ Microbiol. 2019 Jan 23;85(3). pii: e02077-18. doi: 10.1128/AEM.02077-18. Print 2019 Feb 1.

PMID:
30478231
6.

Molecular cloning and biochemical characterization of VIM-12, a novel hybrid VIM-1/VIM-2 metallo-beta-lactamase from a Klebsiella pneumoniae clinical isolate, reveal atypical substrate specificity.

Kontou M, Pournaras S, Kristo I, Ikonomidis A, Maniatis AN, Stathopoulos C.

Biochemistry. 2007 Nov 13;46(45):13170-8. Epub 2007 Oct 18.

PMID:
17944487
7.

Use of ferrous iron by metallo-β-lactamases.

Cahill ST, Tarhonskaya H, Rydzik AM, Flashman E, McDonough MA, Schofield CJ, Brem J.

J Inorg Biochem. 2016 Oct;163:185-193. doi: 10.1016/j.jinorgbio.2016.07.013. Epub 2016 Jul 26.

8.

The three-dimensional structure of VIM-2, a Zn-beta-lactamase from Pseudomonas aeruginosa in its reduced and oxidised form.

Garcia-Saez I, Docquier JD, Rossolini GM, Dideberg O.

J Mol Biol. 2008 Jan 18;375(3):604-11. Epub 2007 Nov 13.

PMID:
18061205
9.

An in silico approach for understanding the molecular evolution of clinically important metallo-beta-lactamases.

Pal A, Tripathi A.

Infect Genet Evol. 2013 Dec;20:39-47. doi: 10.1016/j.meegid.2013.07.028. Epub 2013 Aug 15.

PMID:
23954421
10.

Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India.

Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR.

Antimicrob Agents Chemother. 2009 Dec;53(12):5046-54. doi: 10.1128/AAC.00774-09. Epub 2009 Sep 21.

11.

His224 alters the R2 drug binding site and Phe218 influences the catalytic efficiency of the metallo-β-lactamase VIM-7.

Leiros HK, Skagseth S, Edvardsen KS, Lorentzen MS, Bjerga GE, Leiros I, Samuelsen Ø.

Antimicrob Agents Chemother. 2014 Aug;58(8):4826-36. doi: 10.1128/AAC.02735-13. Epub 2014 Jun 9.

12.

Exploring the Role of Residue 228 in Substrate and Inhibitor Recognition by VIM Metallo-β-lactamases.

Mojica MF, Mahler SG, Bethel CR, Taracila MA, Kosmopoulou M, Papp-Wallace KM, Llarrull LI, Wilson BM, Marshall SH, Wallace CJ, Villegas MV, Harris ME, Vila AJ, Spencer J, Bonomo RA.

Biochemistry. 2015 May 26;54(20):3183-96. doi: 10.1021/acs.biochem.5b00106. Epub 2015 May 12.

13.

Cross-class metallo-β-lactamase inhibition by bisthiazolidines reveals multiple binding modes.

Hinchliffe P, González MM, Mojica MF, González JM, Castillo V, Saiz C, Kosmopoulou M, Tooke CL, Llarrull LI, Mahler G, Bonomo RA, Vila AJ, Spencer J.

Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):E3745-54. doi: 10.1073/pnas.1601368113. Epub 2016 Jun 14.

14.

Cyclic Boronates Inhibit All Classes of β-Lactamases.

Cahill ST, Cain R, Wang DY, Lohans CT, Wareham DW, Oswin HP, Mohammed J, Spencer J, Fishwick CW, McDonough MA, Schofield CJ, Brem J.

Antimicrob Agents Chemother. 2017 Mar 24;61(4). pii: e02260-16. doi: 10.1128/AAC.02260-16. Print 2017 Apr.

15.

Comparison of Verona Integron-Borne Metallo-β-Lactamase (VIM) Variants Reveals Differences in Stability and Inhibition Profiles.

Makena A, Düzgün AÖ, Brem J, McDonough MA, Rydzik AM, Abboud MI, Saral A, Çiçek AÇ, Sandalli C, Schofield CJ.

Antimicrob Agents Chemother. 2015 Dec 14;60(3):1377-84. doi: 10.1128/AAC.01768-15.

16.

Discovery of a Novel Metallo-β-Lactamase Inhibitor That Potentiates Meropenem Activity against Carbapenem-Resistant Enterobacteriaceae.

Everett M, Sprynski N, Coelho A, Castandet J, Bayet M, Bougnon J, Lozano C, Davies DT, Leiris S, Zalacain M, Morrissey I, Magnet S, Holden K, Warn P, De Luca F, Docquier JD, Lemonnier M.

Antimicrob Agents Chemother. 2018 Apr 26;62(5). pii: e00074-18. doi: 10.1128/AAC.00074-18. Print 2018 May.

17.

A close look onto structural models and primary ligands of metallo-β-lactamases.

Raczynska JE, Shabalin IG, Minor W, Wlodawer A, Jaskolski M.

Drug Resist Updat. 2018 Sep;40:1-12. doi: 10.1016/j.drup.2018.08.001. Epub 2018 Aug 25. Review.

PMID:
30466711
18.

Mechanism of imipenem resistance in metallo-β-lactamases expressing pathogenic bacterial spp. and identification of potential inhibitors: An in silico approach.

Malathi K, Ramaiah S.

J Cell Biochem. 2019 Jan;120(1):584-591. doi: 10.1002/jcb.27414. Epub 2018 Aug 20.

PMID:
30125985
19.
20.

Crystal structure of the IMP-1 metallo beta-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent, broad-spectrum inhibitor.

Concha NO, Janson CA, Rowling P, Pearson S, Cheever CA, Clarke BP, Lewis C, Galleni M, Frère JM, Payne DJ, Bateson JH, Abdel-Meguid SS.

Biochemistry. 2000 Apr 18;39(15):4288-98.

PMID:
10757977

Supplemental Content

Support Center