Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95

1.

Expression Patterns, Genomic Conservation and Input Into Developmental Regulation of the GGDEF/EAL/HD-GYP Domain Proteins in Streptomyces.

Al-Bassam MM, Haist J, Neumann SA, Lindenberg S, Tschowri N.

Front Microbiol. 2018 Oct 23;9:2524. doi: 10.3389/fmicb.2018.02524. eCollection 2018.

2.

More than Enzymes That Make or Break Cyclic Di-GMP-Local Signaling in the Interactome of GGDEF/EAL Domain Proteins of Escherichia coli.

Sarenko O, Klauck G, Wilke FM, Pfiffer V, Richter AM, Herbst S, Kaever V, Hengge R.

MBio. 2017 Oct 10;8(5). pii: e01639-17. doi: 10.1128/mBio.01639-17.

3.

Cyclic Di-GMP phosphodiesterases RmdA and RmdB are involved in regulating colony morphology and development in Streptomyces coelicolor.

Hull TD, Ryu MH, Sullivan MJ, Johnson RC, Klena NT, Geiger RM, Gomelsky M, Bennett JA.

J Bacteriol. 2012 Sep;194(17):4642-51. doi: 10.1128/JB.00157-12. Epub 2012 Jun 29.

4.

Genomic analysis of cyclic-di-GMP-related genes in rhizobial type strains and functional analysis in Rhizobium etli.

Gao S, Romdhane SB, Beullens S, Kaever V, Lambrichts I, Fauvart M, Michiels J.

Appl Microbiol Biotechnol. 2014 May;98(10):4589-602. doi: 10.1007/s00253-014-5722-7. Epub 2014 Apr 12.

PMID:
24728599
5.

Genome-Based Comparison of Cyclic Di-GMP Signaling in Pathogenic and Commensal Escherichia coli Strains.

Povolotsky TL, Hengge R.

J Bacteriol. 2015 Aug 24;198(1):111-26. doi: 10.1128/JB.00520-15. Print 2016 Jan 1.

6.

Comprehensive overexpression analysis of cyclic-di-GMP signalling proteins in the phytopathogen Pectobacterium atrosepticum reveals diverse effects on motility and virulence phenotypes.

Tan H, West JA, Ramsay JP, Monson RE, Griffin JL, Toth IK, Salmond GP.

Microbiology. 2014 Jul;160(Pt 7):1427-39. doi: 10.1099/mic.0.076828-0. Epub 2014 Apr 23.

PMID:
24760967
7.

Phosphodiesterase EdpX1 Promotes Xanthomonas oryzae pv. oryzae Virulence, Exopolysaccharide Production, and Biofilm Formation.

Xue D, Tian F, Yang F, Chen H, Yuan X, Yang CH, Chen Y, Wang Q, He C.

Appl Environ Microbiol. 2018 Oct 30;84(22). pii: e01717-18. doi: 10.1128/AEM.01717-18. Print 2018 Nov 15.

PMID:
30217836
8.

Identification and characterization of cyclic diguanylate signaling systems controlling rugosity in Vibrio cholerae.

Beyhan S, Odell LS, Yildiz FH.

J Bacteriol. 2008 Nov;190(22):7392-405. doi: 10.1128/JB.00564-08. Epub 2008 Sep 12.

9.

The structure of an unconventional HD-GYP protein from Bdellovibrio reveals the roles of conserved residues in this class of cyclic-di-GMP phosphodiesterases.

Lovering AL, Capeness MJ, Lambert C, Hobley L, Sockett RE.

MBio. 2011 Oct 11;2(5). pii: e00163-11. doi: 10.1128/mBio.00163-11. Print 2011.

10.

Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP.

Christen M, Christen B, Folcher M, Schauerte A, Jenal U.

J Biol Chem. 2005 Sep 2;280(35):30829-37. Epub 2005 Jul 1.

11.

Systematic Nomenclature for GGDEF and EAL Domain-Containing Cyclic Di-GMP Turnover Proteins of Escherichia coli.

Hengge R, Galperin MY, Ghigo JM, Gomelsky M, Green J, Hughes KT, Jenal U, Landini P.

J Bacteriol. 2015 Jul 6;198(1):7-11. doi: 10.1128/JB.00424-15. Print 2016 Jan 1.

12.

Progress in Understanding the Molecular Basis Underlying Functional Diversification of Cyclic Dinucleotide Turnover Proteins.

Römling U, Liang ZX, Dow JM.

J Bacteriol. 2017 Feb 14;199(5). pii: e00790-16. doi: 10.1128/JB.00790-16. Print 2017 Mar 1. Review.

13.

c-di-GMP turn-over in Clostridium difficile is controlled by a plethora of diguanylate cyclases and phosphodiesterases.

Bordeleau E, Fortier LC, Malouin F, Burrus V.

PLoS Genet. 2011 Mar;7(3):e1002039. doi: 10.1371/journal.pgen.1002039. Epub 2011 Mar 31.

14.

Comparative analysis of diguanylate cyclase and phosphodiesterase genes in Klebsiella pneumoniae.

Cruz DP, Huertas MG, Lozano M, Zárate L, Zambrano MM.

BMC Microbiol. 2012 Jul 9;12:139. doi: 10.1186/1471-2180-12-139.

15.

Detailed analysis of c-di-GMP mediated regulation of csgD expression in Salmonella typhimurium.

Ahmad I, Cimdins A, Beske T, Römling U.

BMC Microbiol. 2017 Feb 2;17(1):27. doi: 10.1186/s12866-017-0934-5.

16.

Genetic reductionist approach for dissecting individual roles of GGDEF proteins within the c-di-GMP signaling network in Salmonella.

Solano C, García B, Latasa C, Toledo-Arana A, Zorraquino V, Valle J, Casals J, Pedroso E, Lasa I.

Proc Natl Acad Sci U S A. 2009 May 12;106(19):7997-8002. doi: 10.1073/pnas.0812573106. Epub 2009 Apr 28.

17.

Identification of a cyclic-di-GMP-modulating response regulator that impacts biofilm formation in a model sulfate reducing bacterium.

Rajeev L, Luning EG, Altenburg S, Zane GM, Baidoo EE, Catena M, Keasling JD, Wall JD, Fields MW, Mukhopadhyay A.

Front Microbiol. 2014 Jul 29;5:382. doi: 10.3389/fmicb.2014.00382. eCollection 2014.

18.

Gene expression patterns and differential input into curli fimbriae regulation of all GGDEF/EAL domain proteins in Escherichia coli.

Sommerfeldt N, Possling A, Becker G, Pesavento C, Tschowri N, Hengge R.

Microbiology. 2009 Apr;155(Pt 4):1318-31. doi: 10.1099/mic.0.024257-0.

PMID:
19332833
19.

Cyclic-di-GMP-mediated signalling within the sigma network of Escherichia coli.

Weber H, Pesavento C, Possling A, Tischendorf G, Hengge R.

Mol Microbiol. 2006 Nov;62(4):1014-34. Epub 2006 Sep 29.

20.

A systematic analysis of the role of GGDEF-EAL domain proteins in virulence and motility in Xanthomonas oryzae pv. oryzicola.

Wei C, Jiang W, Zhao M, Ling J, Zeng X, Deng J, Jin D, Dow JM, Sun W.

Sci Rep. 2016 Apr 7;6:23769. doi: 10.1038/srep23769.

Supplemental Content

Support Center