Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

Non-conventional Inhibitory CD4+Foxp3-PD-1hi T Cells as a Biomarker of Immune Checkpoint Blockade Activity.

Zappasodi R, Budhu S, Hellmann MD, Postow MA, Senbabaoglu Y, Manne S, Gasmi B, Liu C, Zhong H, Li Y, Huang AC, Hirschhorn-Cymerman D, Panageas KS, Wherry EJ, Merghoub T, Wolchok JD.

Cancer Cell. 2018 Oct 8;34(4):691. doi: 10.1016/j.ccell.2018.09.007. No abstract available.

PMID:
30300585
2.

Non-conventional Inhibitory CD4+Foxp3-PD-1hi T Cells as a Biomarker of Immune Checkpoint Blockade Activity.

Zappasodi R, Budhu S, Hellmann MD, Postow MA, Senbabaoglu Y, Manne S, Gasmi B, Liu C, Zhong H, Li Y, Huang AC, Hirschhorn-Cymerman D, Panageas KS, Wherry EJ, Merghoub T, Wolchok JD.

Cancer Cell. 2018 Jun 11;33(6):1017-1032.e7. doi: 10.1016/j.ccell.2018.05.009. Erratum in: Cancer Cell. 2018 Oct 8;34(4):691.

PMID:
29894689
3.

Dual PD-1 and CTLA-4 Checkpoint Blockade Promotes Antitumor Immune Responses through CD4+Foxp3- Cell-Mediated Modulation of CD103+ Dendritic Cells.

Beavis PA, Henderson MA, Giuffrida L, Davenport AJ, Petley EV, House IG, Lai J, Sek K, Milenkovski N, John LB, Mardiana S, Slaney CY, Trapani JA, Loi S, Kershaw MH, Haynes NM, Darcy PK.

Cancer Immunol Res. 2018 Sep;6(9):1069-1081. doi: 10.1158/2326-6066.CIR-18-0291. Epub 2018 Jul 17.

PMID:
30018045
4.

Efficacy of PD-1 blockade in cervical cancer is related to a CD8+FoxP3+CD25+ T-cell subset with operational effector functions despite high immune checkpoint levels.

Heeren AM, Rotman J, Stam AGM, Pocorni N, Gassama AA, Samuels S, Bleeker MCG, Mom CH, Zijlmans HJMAA, Kenter GG, Jordanova ES, de Gruijl TD.

J Immunother Cancer. 2019 Feb 12;7(1):43. doi: 10.1186/s40425-019-0526-z.

5.

Expression of PD-1 (CD279) and FoxP3 in diffuse large B-cell lymphoma.

Ahearne MJ, Bhuller K, Hew R, Ibrahim H, Naresh K, Wagner SD.

Virchows Arch. 2014 Sep;465(3):351-8. doi: 10.1007/s00428-014-1615-5. Epub 2014 Jul 11.

PMID:
25011996
6.

Current status and perspectives in translational biomarker research for PD-1/PD-L1 immune checkpoint blockade therapy.

Ma W, Gilligan BM, Yuan J, Li T.

J Hematol Oncol. 2016 May 27;9(1):47. doi: 10.1186/s13045-016-0277-y. Review.

7.

PD1 blockade reverses the suppression of melanoma antigen-specific CTL by CD4+ CD25(Hi) regulatory T cells.

Wang W, Lau R, Yu D, Zhu W, Korman A, Weber J.

Int Immunol. 2009 Sep;21(9):1065-77. doi: 10.1093/intimm/dxp072. Epub 2009 Aug 3.

8.

Plasmodium falciparum-mediated induction of human CD25Foxp3 CD4 T cells is independent of direct TCR stimulation and requires IL-2, IL-10 and TGFbeta.

Scholzen A, Mittag D, Rogerson SJ, Cooke BM, Plebanski M.

PLoS Pathog. 2009 Aug;5(8):e1000543. doi: 10.1371/journal.ppat.1000543. Epub 2009 Aug 14.

9.

Increased CD3+ T cells with a low FOXP3+/CD8+ T cell ratio can predict anti-PD-1 therapeutic response in non-small cell lung cancer patients.

Kim H, Kwon HJ, Han YB, Park SY, Kim ES, Kim SH, Kim YJ, Lee JS, Chung JH.

Mod Pathol. 2019 Mar;32(3):367-375. doi: 10.1038/s41379-018-0142-3. Epub 2018 Oct 8.

PMID:
30297881
10.

The Next Immune-Checkpoint Inhibitors: PD-1/PD-L1 Blockade in Melanoma.

Mahoney KM, Freeman GJ, McDermott DF.

Clin Ther. 2015 Apr 1;37(4):764-82. doi: 10.1016/j.clinthera.2015.02.018. Epub 2015 Mar 29. Review.

11.
12.

Restricting Glutamine or Glutamine-Dependent Purine and Pyrimidine Syntheses Promotes Human T Cells with High FOXP3 Expression and Regulatory Properties.

Metzler B, Gfeller P, Guinet E.

J Immunol. 2016 May 1;196(9):3618-30. doi: 10.4049/jimmunol.1501756. Epub 2016 Mar 28.

13.

Immune Checkpoint Blockade in Breast Cancer Therapy.

Bu X, Yao Y, Li X.

Adv Exp Med Biol. 2017;1026:383-402. doi: 10.1007/978-981-10-6020-5_18. Review.

PMID:
29282694
14.

High circulating CD4+CD25hiFOXP3+ T-cell sub-population early after lung transplantation is associated with development of bronchiolitis obliterans syndrome.

Durand M, Lacoste P, Danger R, Jacquemont L, Brosseau C, Durand E, Tilly G, Loy J, Foureau A, Royer PJ, Tissot A, Roux A, Reynaud-Gaubert M, Kessler R, Mussot S, Dromer C, Brugière O, Mornex JF, Guillemain R, Claustre J, Degauque N, Magnan A, Brouard S; COLT and SysCLAD Consortia.

J Heart Lung Transplant. 2018 Jun;37(6):770-781. doi: 10.1016/j.healun.2018.01.1306. Epub 2018 Mar 20.

PMID:
29571601
15.

Enrichment of Inflammatory IL-17 and TNF-α Secreting CD4(+) T Cells within Colorectal Tumors despite the Presence of Elevated CD39(+) T Regulatory Cells and Increased Expression of the Immune Checkpoint Molecule, PD-1.

Dunne MR, Ryan C, Nolan B, Tosetto M, Geraghty R, Winter DC, O'Connell PR, Hyland JM, Doherty GA, Sheahan K, Ryan EJ, Fletcher JM.

Front Oncol. 2016 Mar 7;6:50. doi: 10.3389/fonc.2016.00050. eCollection 2016.

16.

Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors.

Hargadon KM, Johnson CE, Williams CJ.

Int Immunopharmacol. 2018 Sep;62:29-39. doi: 10.1016/j.intimp.2018.06.001. Epub 2018 Jul 2. Review.

PMID:
29990692
17.

PD-1 Blockade Promotes Emerging Checkpoint Inhibitors in Enhancing T Cell Responses to Allogeneic Dendritic Cells.

Stecher C, Battin C, Leitner J, Zettl M, Grabmeier-Pfistershammer K, Höller C, Zlabinger GJ, Steinberger P.

Front Immunol. 2017 May 22;8:572. doi: 10.3389/fimmu.2017.00572. eCollection 2017.

18.

PD-1 blockade augments humoral immunity through ICOS-mediated CD4+ T cell instruction.

Zhang M, Xia L, Yang Y, Liu S, Ji P, Wang S, Chen Y, Liu Z, Zhang Y, Lu S, Wang Y.

Int Immunopharmacol. 2019 Jan;66:127-138. doi: 10.1016/j.intimp.2018.10.045. Epub 2018 Nov 16.

PMID:
30448635
20.

Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer.

Huang RY, Francois A, McGray AR, Miliotto A, Odunsi K.

Oncoimmunology. 2016 Oct 28;6(1):e1249561. doi: 10.1080/2162402X.2016.1249561. eCollection 2017.

Supplemental Content

Support Center