Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Thermochemical conversion of cobalt-loaded spent coffee grounds for production of energy resource and environmental catalyst.

Cho DW, Tsang DCW, Kim S, Kwon EE, Kwon G, Song H.

Bioresour Technol. 2018 Dec;270:346-351. doi: 10.1016/j.biortech.2018.09.046. Epub 2018 Sep 10.

PMID:
30243241
2.

Reduction of Bromate by Cobalt-Impregnated Biochar Fabricated via Pyrolysis of Lignin Using CO2 as a Reaction Medium.

Cho DW, Kwon G, Ok YS, Kwon EE, Song H.

ACS Appl Mater Interfaces. 2017 Apr 19;9(15):13142-13150. doi: 10.1021/acsami.7b00619. Epub 2017 Apr 10.

PMID:
28362484
3.

Investigation into role of CO2 in two-stage pyrolysis of spent coffee grounds.

Kim Y, Lee J, Yi H, Fai Tsang Y, Kwon EE.

Bioresour Technol. 2019 Jan;272:48-53. doi: 10.1016/j.biortech.2018.10.009. Epub 2018 Oct 5.

PMID:
30308407
4.

Synthesis of cobalt-impregnated carbon composite derived from a renewable resource: Characterization and catalytic performance evaluation.

Cho DW, Jeong KH, Kim S, Tsang DCW, Ok YS, Song H.

Sci Total Environ. 2018 Jan 15;612:103-110. doi: 10.1016/j.scitotenv.2017.08.187. Epub 2017 Sep 1.

PMID:
28846901
5.

CO2 as a reaction medium for pyrolysis of lignin leading to magnetic cobalt-embedded biochar as an enhanced catalyst for Oxone activation.

Yang MT, Tong WC, Lee J, Kwon E, Lin KA.

J Colloid Interface Sci. 2019 Jun 1;545:16-24. doi: 10.1016/j.jcis.2019.02.090. Epub 2019 Feb 28.

PMID:
30861478
6.

Carbon dioxide assisted sustainability enhancement of pyrolysis of waste biomass: A case study with spent coffee ground.

Cho DW, Cho SH, Song H, Kwon EE.

Bioresour Technol. 2015;189:1-6. doi: 10.1016/j.biortech.2015.04.002. Epub 2015 Apr 4.

PMID:
25864025
7.

Thermal behavior and kinetic study for co-pyrolysis of lignocellulosic biomass with polyethylene over Cobalt modified ZSM-5 catalyst by thermogravimetric analysis.

Xiang Z, Liang J, Morgan HM Jr, Liu Y, Mao H, Bu Q.

Bioresour Technol. 2018 Jan;247:804-811. doi: 10.1016/j.biortech.2017.09.178. Epub 2017 Sep 27.

PMID:
30060416
8.

Lignin valorization for the production of renewable chemicals: State-of-the-art review and future prospects.

Cao L, Yu IKM, Liu Y, Ruan X, Tsang DCW, Hunt AJ, Ok YS, Song H, Zhang S.

Bioresour Technol. 2018 Dec;269:465-475. doi: 10.1016/j.biortech.2018.08.065. Epub 2018 Aug 17. Review.

PMID:
30146182
9.

A thermochemical-biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals.

Shen Y, Jarboe L, Brown R, Wen Z.

Biotechnol Adv. 2015 Dec;33(8):1799-813. doi: 10.1016/j.biotechadv.2015.10.006. Epub 2015 Oct 19. Review.

PMID:
26492814
10.

Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass.

Fabbri D, Torri C.

Curr Opin Biotechnol. 2016 Apr;38:167-73. doi: 10.1016/j.copbio.2016.02.004. Epub 2016 Mar 3. Review.

PMID:
26948108
11.

Catalytic conversion of nonfood woody biomass solids to organic liquids.

Barta K, Ford PC.

Acc Chem Res. 2014 May 20;47(5):1503-12. doi: 10.1021/ar4002894. Epub 2014 Apr 18. Review.

12.

Cobalt carbide nanoprisms for direct production of lower olefins from syngas.

Zhong L, Yu F, An Y, Zhao Y, Sun Y, Li Z, Lin T, Lin Y, Qi X, Dai Y, Gu L, Hu J, Jin S, Shen Q, Wang H.

Nature. 2016 Oct 6;538(7623):84-87. doi: 10.1038/nature19786.

PMID:
27708303
13.

Valorization of spent coffee grounds recycling as a potential alternative fuel resource in Turkey: An experimental study.

Atabani AE, Mercimek SM, Arvindnarayan S, Shobana S, Kumar G, Cadir M, Al-Muhatseb AH.

J Air Waste Manag Assoc. 2018 Mar;68(3):196-214. doi: 10.1080/10962247.2017.1367738.

PMID:
28829684
14.

Heterogeneous catalyst-assisted thermochemical conversion of food waste biomass into 5-hydroxymethylfurfural.

Parshetti GK, Suryadharma MS, Pham TPT, Mahmood R, Balasubramanian R.

Bioresour Technol. 2015 Feb;178:19-27. doi: 10.1016/j.biortech.2014.10.066. Epub 2014 Oct 18.

PMID:
25453435
15.

Sequential co-production of biodiesel and bioethanol with spent coffee grounds.

Kwon EE, Yi H, Jeon YJ.

Bioresour Technol. 2013 May;136:475-80. doi: 10.1016/j.biortech.2013.03.052. Epub 2013 Mar 16.

PMID:
23567719
16.

Microwave-assisted catalytic pyrolysis of moso bamboo for high syngas production.

Dong Q, Niu M, Bi D, Liu W, Gu X, Lu C.

Bioresour Technol. 2018 May;256:145-151. doi: 10.1016/j.biortech.2018.02.018. Epub 2018 Feb 6.

PMID:
29438914
17.

Biochar potential evaluation of palm oil wastes through slow pyrolysis: Thermochemical characterization and pyrolytic kinetic studies.

Lee XJ, Lee LY, Gan S, Thangalazhy-Gopakumar S, Ng HK.

Bioresour Technol. 2017 Jul;236:155-163. doi: 10.1016/j.biortech.2017.03.105. Epub 2017 Mar 22.

PMID:
28399419
18.

Utilization of CO2 and biomass char derived from pyrolysis of Dunaliella salina: the effects of steam and catalyst on CO and H2 gas production.

Yang C, Jia L, Su S, Tian Z, Song Q, Fang W, Chen C, Liu G.

Bioresour Technol. 2012 Apr;110:676-81. doi: 10.1016/j.biortech.2012.01.124. Epub 2012 Jan 31.

PMID:
22336747
19.

Phenol and phenolics from lignocellulosic biomass by catalytic microwave pyrolysis.

Bu Q, Lei H, Ren S, Wang L, Holladay J, Zhang Q, Tang J, Ruan R.

Bioresour Technol. 2011 Jul;102(13):7004-7. doi: 10.1016/j.biortech.2011.04.025. Epub 2011 Apr 14.

PMID:
21531545
20.

Trimetallic supported catalyst for renewable source of energy and environmental control through CO2 conversion.

Hussain ST, Mazhar M, Hasib-ur-Rahman M, Bari M.

Environ Technol. 2009 May;30(6):543-59. doi: 10.1080/09593330902806624.

PMID:
19603702

Supplemental Content

Support Center